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Abstract—Leveraging sparsity in deep neural network (DNN)
models is promising for accelerating model inference. Yet existing
GPUs can only leverage the sparsity from weights but not
activations, which are dynamic, unpredictable, and hence chal-
lenging to exploit. In this work, we propose a novel architecture
to efficiently harness the dual-side sparsity (i.e., weight and
activation sparsity). We take a systematic approach to understand
the (dis)advantages of previous sparsity-related architectures,
and propose a novel, unexplored paradigm that combines outer-
product computation primitive and bitmap-based encoding for-
mat. We demonstrate the feasibility of our design with minimal
changes to the existing production-scale inner-product-based Ten-
sor Core. We propose a set of novel ISA extensions, and co-design
the matrix-matrix multiplication and convolution algorithms,
which are the two dominant computation patterns in today’s
DNN models, to exploit our new dual-side sparse Tensor Core.
Our evaluation shows that our design can fully unleash the dual-
side DNN sparsity, and improve the performance by up to one
order of magnitude with small hardware overhead.
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I. INTRODUCTION

As deep learning is widely deployed, there is an emerging
need to support billions of queries of inference per day, which
is rapidly outpacing training in data centers [25]. Especially,
many AI applications have a stringent constraint of service
level agreement. Running models at high-scale, low-latency,
and high energy efficiency has always been extremely de-
sirable. Model compression and sparsification have become
critical optimizations to reduce the number of parameters as
well as arithmetic operations and to improve the computational
and energy efficiency on various hardware platforms, including
ASICs [3], [8], [17], [23], [28], [48], [65]–[67], GPUs [14],
[15], [21], [61], [62], and FPGAs [2], [7], [22], [40], [64].

Realizing the acceleration potential of sparse neural net-
works, GPU vendors have introduced architectural support to
exploit this opportunity. In particular, sparse Tensor Core [44],
[68] is newly invented to leverage the weight sparsity in
DNN models. The latest NVIDIA Ampere architecture [44]
introduces a new sparse Tensor Core design with a fixed
50% weight pruning target and achieves a better accuracy and
performance trade-off [7], [62].

Besides the weight sparsity, DNN models also exhibit
another form of sparsity called activation sparsity, which is
introduced by activation functions [1] and is widely embedded
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TABLE I: Technical differences to related work.

Inner-product Outer-product Misc
CSR [29], [68] [47], [48], [66] [57]

Bitmap [17] Our work -

in activation feature maps, for both computer vision [55] and
natural language processing [13] tasks. Many previous works
have reported a high activation sparsity ranging from 50% to
98% [3], [48]. However, the current sparse Tensor Core is only
able to take advantage of weight sparsity but not activation
sparsity. How to effectively leverage the activation sparsity
remains an open and challenging research problem, because
the activation sparsity dynamically changes with the input
and cannot be pre-determined and controlled by the pruning
method such as the vector-based pruning [68].

Although there are prior efforts that tackle the dual-side
sparsity in the context of ASIC designs, they cannot be directly
adopted by GPUs. The wide applicability of GPUs requires
the support of both sparse general matrix-matrix multiplication
(SpGEMM) and sparse convolution (SpCONV). Those two are
key computation kernels in today’s DNN models ranging from
convolutional neural networks (CNNs) [27], [56], recurrent
neural networks (RNN) [18], [41] to attention-based neural
networks [13], [19]. Unfortunately, current ASIC designs
only consider SpGEMM kernel [47], [57], [66] or SpCONV
kernel [17], [29], [48]. In this work, we aim to accelerate both
dual-side SpCONV and SpGEMM on Tensor Core.

The greatest challenge of supporting the dual-side SpCONV
and SpGEMM on Tensor Core is the unpredictable and ran-
domly distributed non-zero elements inside the input tensors.
The dot product unit, a basic computational unit in Tensor
Core hardware, conducts a vector-vector inner product. Sparse
Tensor Core [44] resolves the irregularity of weight sparsity
by applying a structural pruning scheme, which enforces a
constant 50% weight sparsity to balance the workload and
to exploit parallelism in the dot-product unit. However, this
method cannot be applied to SpGEMM because activation
sparsity is input-dependent and cannot be pre-determined by
pruning methods. Prior ASIC designs take two approaches
to leverage dual-side sparsity, as is summarized in Table I.
SparTen and Extensor [17], [29] accelerate inner-product by
designing dedicated hardware for the inner joint process,
which figures out non-zero elements by matching positions
in two sparse vectors and accessing those elements. But their



method introduces considerable overhead including complex
prefix sum hardware and explicit barrier as the number of non-
zeros to be matched is unpredictable. The other type of work
(e.g. OuterSPACE [47] and SpArch [66]) accelerate SpGEMM
with outer-product but they do not design for SpCONV, which
incurs great performance overhead to straightforwardly trans-
form SpCONV to SpGEMM. Moreover, they are targeted at
matrix density 6×10−3 to 5×10−5, which become inefficient
for mainstream DNN models with the typical density range of
5 × 10−1 to 1 × 10−2. Likewise, SCNN [48] only considers
SpCONV but does not support SpGEMM.

It’s also challenging to accelerate SpCONV. GPUs usually
transform a CONV operator into a GEMM operator via the
im2col method. Sparse Tensor Core [44], [68] only leverages
weight sparsity and the input remains dense, which requires
only dense im2col. However, to leverage dual-side sparsity,
the convolution computation now must consider the sparse
im2col, which slides over the sparse input tensor and incurs
irregular memory accesses. Moreover, because of the space
and time overhead of performing an explicit im2col, vendor-
supplied DNN acceleration library cuDNN [9] provides an
optimization of implicit im2col. The implicit method fuses the
address generation process of im2col into matrix multiplica-
tion, and has the best performance in general cases.1 However,
performing the implicit im2col on the sparse input tensors
is significantly more challenging than on the dense tensors
because of the randomly distributed non-zero elements. In fact,
we show that a naive implementation of implicit sparse im2col
can be 10× to 100× slower than its dense version.

To tackle the problems above, we analyze the computation
patterns of sparse im2col and SpGEMM and compare combi-
nations of different approaches. We argue that bitmap-based
encoding format is more friendly for efficient sparse im2col
acceleration and outer-product is more efficient to leverage
SpGEMM’s opportunities on Tensor Core, as is summarized
in Table I. We thereby propose a bitmap-based sparse im2col
algorithm for SpCONV and an outer-product-based dual-side
sparse Tensor Core architecture for SpGEMM. To further co-
optimize sparse im2col and SpGEMM, we propose an outer-
product-friendly sparse im2col method and a bitmap-based
outer-product SpGEMM algorithm. Combining the above tech-
niques, we achieve an efficient implicit sparse im2col design
for SpCONV acceleration. Verified on Accel-Sim with V100
architecture, we demonstrate efficient acceleration of both
SpCONV and SpGEMM on the proposed dual-side sparse
Tensor Core architecture, achieving a speedup of up to one
order of magnitude compared with state-of-the-art baselines
and imposing negligible hardware overhead.

The key technical contributions of this work are as follows:
• We propose a novel method that combines outer product

and bitmap encoding to accelerate SpGEMM (Section III)
and SpCONV (Section IV). To the best of our knowledge,

1Although there are other faster convolution methods [35] than implicit
im2col, they only prevail on specific matrix shapes, like Winograd for 3× 3
convolution kernel. In this work, we only focus on implicit im2col, which
outperforms other methods on the majority cases.

our work is the first to study the sparse and implicit im2col
method that is critical for SpCONV acceleration on GPUs.

• We show the architectural friendliness of our method to
existing GPUs by proposing a small set of modifications,
which transform the existing Tensor Core to harness the
dual-side sparsity. We also propose novel instruction set
extensions that let us leverage the existing high-performance
libraries to accelerate SpGEMM and SpCONV (Section V).

• Through extensive evaluations, our dual-side sparse Tensor
Core achieves a speedup of up to 7.49× for SpCONV and
up to 8.45× for SpGEMM over state-of-the-art methods,
with a small 1.5% area overhead. (Section VI)

II. BACKGROUND AND RELATED WORK

A. Opportunities of sparsity in DNNs

Weight sparsity has been extensively explored in many prior
arts, including computer vision and natural language process-
ing tasks [20], [24], [31], [32], [37], [60]. They demonstrate
high sparsity with various pruning methods. However, a sig-
nificant reduction in weights can only save storage costs, but
hardly speed up inference due to the fragmented irregular pat-
tern of the pruning method. Some researchers [39], [59], [60],
[63], [68] achieve practical speedup by proposing hardware
friendly pruning methods. In NVIDIA’s latest Ampere GPU,
sparse Tensor Core is first introduced in GPU architecture by
adopting the fine-grained structural pruning [7], [44], [62].

Activation sparsity naturally occurs in CNN’s feature maps
and RNN’s hidden layers followed by ReLU [1] activation
functions. Different from weight sparsity that can apply struc-
tural pruning by artificial efforts, activation sparsity dynam-
ically changes with input images and is featured with a
highly unstructured pattern. Previous works [6], [48], [55]
demonstrate that activation sparsity can be as high as 45% to
98%. Some researchers [34], [52] accelerate activation sparsity
on GPUs by adding blocked masks but it requires external
knowledge and is not generic. Besides performance acceler-
ation, prior works have also exploited the DNN sparsity to
improve their robustness [16], [50]. However, to the best of our
knowledge, no previous work has demonstrated meaningful
speedup by exploiting activation sparsity on GPU.

B. Computation kernels

Deep neural networks are composed of multiple structurally
connected layers of linear and non-linear functions. Among
them, matrix multiplication and convolution are the major
computation kernels with dominating amount of parameters
and computation workloads [12], [64].

Matrix multiplication (GEMM) is the major computation
kernel in NLP models, e.g. RNNs [32] and attention-based
models [13]. Dense GEMM is one of the fundamental com-
putation primitives provided by GPU, which has been under
continuous optimization. Especially, Tensor Core, as the spe-
cialized hardware, has recently been deployed in GPU to boost
GEMM performance by an order of magnitude.

Convolution has played a key role in CNNs [27], [52],
which often takes over more than 90% of the overall workload
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Fig. 1: The im2col-based transformation of CONV to GEMM.

[12]. The convolution takes in a number of C input feature
maps, each sized of H × W . Every input feature map is
convolved by a sliding kernel sized of K×K to calculate one
pixel in the output feature map. A total of N feature maps
will be generated as output to the next layer.

To leverage tensor core’s matrix-multiply primitives, state-
of-the-art DNN acceleration libraries, e.g. cuDNN, usually
transforms convolution into matrix-multiplication by applying
im2col function. Figure 1 shows an overview of the im2col
function. It re-arranges and expands convolution’s input fea-
ture maps into a matrix, called lowered feature map, whose
each row corresponds to a location of 2-dim sliding window in
convolution’s input feature maps. Im2col on weight parameters
is simply flattening each K×K×C kernel. Since im2col’s data
expansion is mainly applied on input feature maps, the weight-
sparse architecture treats im2col as dense im2col while the
dual-side sparse architecture has to deal with sparse im2col,
which has not been fully discussed in previous work.

The naı̈ve approach, called explicit im2col, conducts im2col
and GEMM separately. One concern about explicit im2col is
that the lowered feature map usually takes K×K times more
global memory than original feature map because the over-
lapped sliding windows generate duplicated data. To improve
the input data reuse, the state-of-the-art DNN library (e.g.
cuDNN) uses implicit im2col, which keeps original feature
map layout in global memory and uses an address conversion
scheme to do im2col transformation in on-chip caches, instead
of physically duplicating data in global memory. Implicit
im2col has been widely used as the state-of-the-art method
in accelerating convolution with GEMM operators.

C. Design philosophy and challenges

In this paper, our design target is to transform the existing
Tensor Core with the minimal modification to exploit the
both weight and activation sparsity for better performance.
The alternative design is to directly port an existing ASIC
as the GPU’s co-processor. However, this design philosophy
leads to a significant area cost. E.g., SpArch [66] uses an
array with 16 floating point multipliers to compute the outer-
product for SpGEMM, and requires specialized Merge Tree
and matrix read/write hardware, which occupies the 98.4%
die area (≈ 28mm2 @ 40nm ). If we were to scale the
design to 40960 FP multipliers in V100 [46], the estimated
area cost would be prohibitively expensive (i.e., 71680 mm2).
In contrast, our design philosophy tries to reuse the GPU’s
hardware resources such as memory hierarchies and data path,
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Fig. 2: Our proposed bitmap-based outer-product SpGEMM.

which leads to a small overhead (≈ 12.8mm2, or 1.5% as we
show later).

The challenges for our design philosophy lie in the aspect
that we need to support both the SpGEMM and SpCONV. The
prior SpGEMM designs such as OuterSPACE [47] and SpArch
[66] target at matrix density 6 × 10−3 to 5 × 10−5, which
become inefficient for mainstream DNN models with the
typical density range of 5×10−1 to 1×10−2. Moreover, those
designs do not support SpCONV, where the aforementioned
im2col approach imposes a unique challenge as it needs to
handle the sparse and unpredictable non-zero elements in the
input tensor. As such, none of the prior designs serve our
purpose and we need new architectural innovations.

III. BITMAP-BASED SPGEMM

We propose outer-product-based algorithm to accelerate
SpGEMM using the bitmap-based sparse encoding format.

A. Overview

To exploit the dual-side sparsity, we propose an efficient
SpGEMM algorithm based on outer-product matrix multiplica-
tion. A basic step in outer-product-based matrix multiplication
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is to compute a cross product between a column of A (sized
of M×1) and a row of B (sized of 1×N ), which leads to the
output M ×N partial matrix (e.g. D1, D2, D3 in Figure 2a).
To generate the final output, we need to accumulate all those
partial results and bias matrix C with multiple rounds.

Our approach achieves an efficient outer product by using
bitmap representation, as shown in Figure 2b. Each input
matrix is represented by a two-tuple encoding of a bitmap
(e.g. Ab and Bb), and a collection of non-zero values (e.g.
Av and Bv). The bitmap uses 1’s for positions of non-zero
values and 0’s for zeros. To support outer-product, matrix Av

is encoded in column-major and Bv is encoded in row-major.
The proposed SpGEMM algorithm has three major oper-

ations on the bitmap encoded matrices, which are multiply-
value, multiply-bitmap and merge respectively. In Figure 2c,
the multiply-value operation computes the cross-product on
each vector-vector pair of Av and Bv to generate values of
the partial matrices (e.g. D1v , D2v , and D3v). Since the outer-
product avoids the explicit inner-join process, its multiplica-
tion is regular and easy to accelerate. The multiply-bitmap
operation computes 1-bit cross product on the bitmaps Ab and
Bb. The output bitmap contains the sparsity information of
the corresponding partial matrix, such as D1b to D3b. At last,
the merge operation uses values (e.g. D1v) and bitmaps (e.g.
D1b) of the partial matrices from the previous two operations
to do the accumulation with multiple rounds, such as from
E1 to E3. Despite the benefits from the regular multiplication
provided by the outer product, the partial matrix is sparse and
irregular. However, it is worthwhile to make this trade-off
because dealing with a single-side irregular accumulation is
much cheaper than dual-side sparse multiplication. We propose
a gather-scatter method to merge the non-zero values from
different partial matrices with multiple rounds.

In the following section, we present a detailed analysis
on the problems of inner-product-based Tensor Core with
accelerating SpGEMM and the advantages of outer-product-
based Tensor Core. Then we propose an SpGEMM algorithm
for the outer-product Tensor Cores in a warp. At last, we
extend to the whole device.

B. SpGEMM in a Warp

1) Problems of Inner-product Tensor Core: In V100 archi-
tecture [46], a warp controls two tensor cores simultaneously.
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Each tensor core can complete a 4 × 4 × 4 dense matrix
multiplication per cycle in a 4-stage pipeline [51]. The basic
computation unit in a dense tensor core is a parallel 4-
element vector-vector dot product unit that multiplies and
accumulates A matrix row and B matrix column, as Figure 3a
shows. For single-side sparse matrix multiplication, the dot
product requires selecting and accessing non-zero elements in
matching positions in the dense vector. To solve the irregular
addressing introduced in sparse models, sparse tensor core
[44] uses a structural pruning scheme that conducts a 2-out-
of-4 pruning in each partitioned sub-vector, which enforces a
constant 50% weight sparsity to balance the workload and
to exploit parallelism in the dot-product unit, as shown in
Figure 3b. However, this method is inefficient for dual-side
sparse matrix multiplication because activation sparsity is
input-dependent and the number of non-zeros to be jointly
matched is unpredictable, which results in difficulties to fulfill
the dot product parallelism, as shown in Figure 3c. Although
some prior ASIC designs [17], [29], [48] propose dedicated
hardware to solve this problem, their method either uses
complex prefix sum hardware, costly shuffling register, or
explicit barrier, which introduces considerable overheads and
significant modifications to the Tensor Cores.

2) Outer-product Tensor Core (OTC): Our design adopts an
outer-product-based tensor core shown in Figure 4a. We use
an 8× 8× 1 tile size as it has the same number of multipliers
and adders (i.e. 64 in FP16) as the inner-product tensor core.

OTC naturally avoids the inner-join process and can elimi-
nate the irregular addressing by condensing two sparse inputs
into two dense ones. As shown in Figure 4c, outer-product-
based solutions can push all non-zeros in each column of
matrix A to the upper-side and all non-zeros in each row of
matrix B to the left, forming two dense vectors. Outer-product
multiplication on the condensed inputs yields a condensed
matrix multiplication. After condensing, non-zero elements
are concentrated so that tensor cores take less instructions to
complete a matrix multiplication and thus can achieve speedup
over the original dense one.

3) Warp-level Outer-product SpGEMM: We propose an
efficient warp-level SpGEMM algorithm with OTCs. Recall
that there are two Tensor Cores working concurrently in a
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warp, each performing a 4 × 4 × 4 matrix multiplication. In
this section, we assume that the OTCs maintain an equivalent
computing power, with two tensor cores together performing
8 × 16 × 1 outer product. Section V will provide more
architectural details.

Figure 5 shows an example, where our warp-level SpGEMM
achieves speedup on OTC with sparse inputs. It shows a
32× 32×K warp tile computed in the outer-product manner.
Since OTC computes an 8× 16× 1 tile in a cycle, it takes 8
steps to complete the 32 × 32 × 1 outer-product. For sparse
inputs, Av and Bv have less non-zeros elements in each
column and row. Thus we can achieve speedup by skipping
OTC steps. Figure 5’s right-hand shows an example, where
the column vector from Av has 20 non-zeros in 32 elements,
and row vector from Bv has 11 non-zeros in 32 elements. As
such, 5 out of 8 OTC steps have pure zero elements and can
be skipped, leading to a 8

3 = 2.67× speedup in theory. The
number of skipped OTC steps depends on the sparsity of the
input vectors, which are 〈0%, 25%, 50%, 75%〉 on the Av side
and 〈0%, 50%〉 on the Bv side. Zeros are padded to the inputs
to fulfill OTC’s 8× 16 tile dimension.

Discussion: Although the acceleration opportunity within a
warp relies on an enumerable number of fixed sparsity ratio
(e.g. 〈0%, 50%〉 for Bv), our method at the global matrix level
can go beyond this limitation. Figure 6 shows an example
where a row of the global matrix has a 37.5% sparsity, which
should have no speedup on the assumption that we can only
benefit from 〈0%, 50%〉 sparsity. However, we can still achieve
an approximately 1.3× speedup after considering warp tiling
at the global matrix level. Because the non-zeros are usually
not evenly distributed across the global matrix, some warps
such as warp 1 and 3 in Figure 6 can still enjoy the speedup
provided by our SpGEMM.

One design challenge in our warp-level SpGEMM algorithm
is that the outer product requires all M × N elements of

0.3 0.5 1.2 3.5 2.2 1.8

0.4 0.8 1.1 3.0 0.0 1.4

0.7 0.6 1.4 1.6 1.3 2.7

0.6 0.0 0.1 3.3 2.3 2.1

1.8 0.9 0.6 0.4 1.5 0.5

2.7 1.2 1.3 1.9 0.6 2.2

2.2 1.3 0.5

0.1 1.1 0.3

0.8 0.6 3.0

0 0 0 0 0 0

1 0 0 1 0 1

0 0 0 0 0 0

1 0 0 1 0 1

1 0 0 1 0 1

0 0 0 0 0 0

Bitmap

Accumulate 

partial matrix D

Scatter and 

write-back 

matrix D

Previously accumulated partial matrix D

Scatter &
Write-back

Gather
Value

Bitmap-encoded partial matrix D

2.2 1.3 0.5

0.1 1.1 0.3

0.8 0.6 3.0

0.4 3.0 1.4

0.6 3.3 2.1

1.8 0.4 0.5

2.6 4.3 1.9

0.7 4.4 2.4

2.6 1.0 3.5

2.6 4.3 1.9

0.7 4.4 2.4

2.6 1.0 3.5

0 0 0 0 0 0

1 0 0 1 0 1

0 0 0 0 0 0

1 0 0 1 0 1

1 0 0 1 0 1

0 0 0 0 0 0

0.3 0.5 1.2 3.5 2.2 1.8

2.6 0.8 1.1 4.3 0.0 1.9

0.7 0.6 1.4 1.6 1.3 2.7

0.7 0.0 0.1 4.4 2.3 2.4

2.6 0.9 0.6 1.0 1.5 3.5

2.7 1.2 1.3 1.9 0.6 2.2

Gathered matrix D

1

2

3

Result

Fig. 7: Gather-Scatter accumulation.

D to be stored in Tensor Core’s local buffer so that it can
be accumulated immediately. Therefore, the warp-tile size is
majorly constrained by the Tensor Core’s local buffer size.
Hardware design and evaluation are described in Section V
and Section VI, respectively.

4) Merge: The merge operation accumulates the partial
matrices in multiple steps, as in Figure 2c. In each step, we
merge the newly generated partial matrix in bitmap encoding
(e.g. D2v and D2b) with the previously accumulated results
(e.g. E1). The pre-computed bitmap matrix (e.g. D1b) lets us
easily derive the positions of non-zeros to be accumulated.

Fig. 7 shows three steps in our merge operation. First, we
use the bitmap to Êgather corresponding elements from the
previous accumulated matrix. Then, the gathered elements are
Ëaccumulated to the values from multiply-value output. We
finally use Ìscatter function to restore non-zeros’ positions
by matching the 1’s in bitmap and write to the result matrix.

To map merge on the OTC, we integrate the gather-
accumulate-scatter procedure into Tensor Core’s output matrix
buffer with two optimizations. On one side, parallel accumu-
lations are required to match OTC’s multiply throughput. We
design an efficient multiply-accumulate pipeline with 128-way
parallel accumulators. On the other side, we design a light-
weight operand collector to deal with irregular memory access
in the gather-scatter function. Hardware design and evaluation
are discussed in Section V and Section VI.

C. SpGEMM on the device

The biggest challenge to map the SpGEMM on the entire
device is that the outer product has poor output data reuse.
When running a large matrix multiplication, outer products
will produce a large amount of data in partial matrices. For
SpGEMM, randomly distributed non-zero elements (e.g. D1)
in the partial matrix will yield a large addressing space and
may often exceed a warp’s local buffer size. These long-
range addressing will result in frequent and fragmented global
memory access, as the example shows in Figure 8a.
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To address the problem, we introduce a hierarchical bitmap
encoding format that is aware of GPU’s tiling scheme on
SpGEMM. As Figure 8b shows, we first partition SpGEMM
into thread blocks, each of which computes an output block
by iteratively loading blocks of A and B from input matrices.
Each thread block computes a 32 × 32 × 16 matrix multipli-
cation by running a warp-level SpGEMM aforementioned.

To achieve this optimization, we propose a two-level bitmap
encoding format. It contains three tuples, as shown in Figure 9.
The first level bitmap encodes each partitioned matrix tile.
Each ‘1’ or ‘0’ in this bitmap represents elemental zeros or
non-zeros in the warp tile, and thus it is called element-bitmap.
Since the sparse inputs’ non-zero elements are located within
the tile, the positions of output partial matrix non-zeros are
also located within this tile, and thus can be fitted in Tensor
Core’s fastest local buffer and avoid external memory access.
The second level bitmap is called warp-bitmap, which uses a
‘1’ or ‘0’ to represent the entire tile, where ‘0’s means the tile
is empty and ‘1’s is not. The warp with a ‘0’ warp-bit can be
skipped because either of the two input tiles are pure zeros.
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Fig. 10: Outer product friendly im2col on dense matrix.

IV. DUAL-SIDE SPARSE CONVOLUTION

GPU usually accelerates dense convolution by transforming
it into a GEMM operator through im2col function. To leverage
the proposed SpGEMM algorithm, we propose a novel sparse
im2col method for dual-side sparse convolution.

Im2col mainly rearranges the data organization of input fea-
ture maps as an input of GEMM. Thus, improperly designed
im2col may harm input data re-use for matrix multiplication.
We propose an outer-product friendly im2col method for
generic outer-product. To avoid the space and time overhead by
doing im2col explicitly, we present our implicit sparse im2col
algorithm that supports efficient data rearranging in registers.

A. Outer-product friendly im2col

Figure 10a shows an example of im2col on a 3× 6 feature
map with a 3×3 convolution kernel. It rearranges all elements
in the 3× 3 sliding window into a row in the lowered feature
map. And the output matrix of im2col is generated by shifting
the sliding window by one element per step with multiple
rounds. This process is friendly for inner-products because
one row in each step matches inner-product’s multiply-and-
accumulated computation. On the contrary, outer-product re-
quires a column of data in each step, which im2col cannot
utilize the fully lowered feature map.

In contrast, the proposed outer-product-friendly im2col gen-
erates a column of data in the lowered feature map at a time in
Figure 10b. For example, the first three columns come from
the first row in the feature map. And these three columns
share four data from each other. If sliding a 1×4 window
scanning over the feature map in a zig-zag way, we will get a
column-major lowered feature map as the input of GEMM. In
generic cases, the number of values in a column is decided by
feature map and convolution kernel size, which is calculated
by B = (R − K + S)/S, where 〈R,K, S〉 stands for row
size of feature map, convolution kernel size, and stride size,
respectively. This transformation is equivalent to permuting the
loop nest of accessing the lowered feature map by structuring
the inner-most loop as the outer-most.
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B. Bitmap-based sparse im2col

Similar to dense implicit im2col, our sparse implicit im2col
keeps the bitmap-encoded sparse feature maps in global mem-
ory and re-arranges data layout in register. Matrix B is simply
bitmap-encoding of the flattened sparse weight matrix.

Bitmap is efficient for sparse im2col because it inherits the
structural information from a dense matrix. So bitmap-based
encoding format can first conduct im2col on bitmap using
a method similar to dense im2col and generate a lowered
bitmap. Then, we use the bitmap as a mask to fetch the
corresponding non-zero values. Figure 11 shows a detailed
flow of our approach with an example. We use a 3×6 feature
map convoluted by a 3 × 3 kernel, and get a 4 × 9 lowered
feature map in Figure 11a. Due to the outer-product-friendly
im2col method, the first three columns of data, which we
highlight, are generated sequentially in this example.

S0 We first encode the original feature map in bitmap format.
S1 We take the first bitmap row from bitmap encoding and its

corresponding non-zero values.
S2 For the first column, we apply a mask on the bitmap row and

output the bits falling in the mask as the first column bitmap
for the lowered feature map. For the subsequent columns,
we shift left the bitmap row, which leads to shifted-out bit.

S3 We accumulate the shifted-out bit and use the accumulated
result as the address offset to access the non-zero values.

S4 We use population count to count the number of non-zeros
in the mask. We find corresponding non-zero data in the
value vector and output its value, address offset and length.
Our approach is efficient for two reasons. First, all required

operations are low cost and can be conducted in register file.
Second, the result is already in the condensed format, and can
be directly fed to outer-product SpGEMM via register reads.

V. OUTER PRODUCT SPARSE TENSOR CORE

In this section, we introduce the micro-architecture exten-
sions to support our bitmap-based SpGEMM and SpCONV.

A. Outer-product Tensor Core (OTC)

We modify Tensor Core hardware from inner-product to
outer-product for dense matrix multiplication because it is a
pre-requisite for our SpGEMM algorithm.

1) Hardware modification: Tensor Core, a specialized ma-
trix multiplication hardware, is integrated into NVIDIA’s
GPGPU since Volta architecture [46] to accelerate machine
learning tasks. Figure 12a shows an overview of a Sub-Core
[11] in a Volta’s streaming processor (SM). Each Sub-Core
contains a bunch of math function units and two Tensor
Cores. Each Tensor Core completes a 4× 4× 4 dense matrix
multiplication in a cycle in a 4-stage pipeline [51]. In the V100
GPU, a total number of 640 Tensor Cores are distributed across
80 SMs, with 2 Tensor Cores per Sub-Core and 4 Sub-Cores
per SM, providing a peak performance of 125 TFLOPS at
1530 MHz clock frequency.

Figure 12b shows a detailed architecture of the two Tensor
Cores in a Sub-Core. Each Tensor Core contains 16 inner-
product units. Each inner product unit performs a four-element
dot-product (FEDP), yielding a total computing power of
64 multiply-accumulate per cycle in a single Tensor Core.
Figure 12c details a FEDP structure, which multiplies and ac-
cumulates two four-element vectors from A and B in parallel.
The 16 FEDPs are grouped into two ’Octets,’ eight to each
Octet. One Octet is further split into two thread groups. Each
thread group contains four FEDPs and computes four elements
in the 4× 4 output matrix, as is shown in Figure 12e.

We modify the above-mentioned inner-product Tensor Core
to fit for dense outer-product’s computation. Figure 12d de-
picts our changes to the FEDP hardware. Our four-element
outer product (FEOP) multiplies one element from A with four
elements from B in parallel and accumulates partial results
with the adders. As such, four FEOPs in a thread group
collectively perform a 4× 4 outer-product, as in Figure 12f.

2) ISA extensions for dense outer product: Recall that each
tensor core performs a 4× 4× 4 dense matrix multiplication.
Two tensor cores work cooperatively and form a machine-level
HMMA.884 instruction to compute an 8× 8× 4 output block
by taking an 8× 4 tile of A and a 4× 8 tile of B, as shown
in Figure 13a. Four sets of HMMA instructions are used to
compute an 8× 8× 16 tile. At the warp level, CUDA exposes
a WMMA API that computes a larger 16 × 16 × 16 matrix
operation with these HMMA instructions in 32 cycles.
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Fig. 13: The original WMMA operation computes a 16×16×16
matrix multiplication in a warp tile. We define OWMMA (outer-
product WMMA) operation that computes the dense warp-tile with
16 sets of OHMMA.8161 instructions.

Fig. 13b depicts our outer-product tensor core (OTC) inter-
face. Each OTC conducts an 8 × 8 × 1 dense vector-vector
outer product, which has the same 64 FP16 multipliers as the
original 4× 4× 4 Tensor Core. Two OTCs form a 8× 16× 1
Outer-product HMMA (OHMMA.8161) instruction that takes
a 8× 1 tile of Av and a 1× 16 tile of Bv as input. We define
16 sets of OHMMA instructions to complete the full-warp
16 × 16 × 16 matrix multiplication (OWMMA). In total, an
OTC also takes 32 cycles to finish an OWMMA operation.

The bitmap outer-product is also an essential step in our
bitmap-based SpGEMM. To accelerate bitmap operation, we
execute multiply-bitmap on the OTC in Tensor Core. We define
Binary OHMMA instruction (BOHMMA), which conducts
outer product on 1-bit inputs. Since Volta architecture [11],
Tensor Core has already started to support binary operations
that process 16× larger matrix tile than the FP16 operations
[10]. We inherit the binary operator design from the native
Tensor Core and extend the binary OHMMA (BOHMMA)
instruction to support 32 × 32 × 1 binary outer product. The

multiply-bitmap achieves low cost because BOHMMA is 16×
faster than HMMA on FP16 outer product. OHMMA and
BOHMMA instruction are defined in Figure 14.

HMMA.OHMMA.8161.F32.F32 {R9, R10, R11, R12},
{R1, R2}, {R3, R4}, {R5, R6, R7, R8};

HMMA.BOHMMA.32321.B32.B32 R3, R1, R2;

Fig. 14: Extended machine-level OHMMA/BOHMMA instructions.

B. Dual-side Sparse Tensor Core

We propose two adaptations to achieve speedup on dual-side
sparsity with the above hardware and instruction extensions
support. On the software side, we define SpWMMA, warp-
level dual-side sparse matrix multiplication API that exploits
sparsity in matrix A and B by dynamically skipping OHMMA
instructions. On the hardware side, we propose the accumula-
tion buffer to gather partial results from outer-product units.

1) Warp-level interface: We define a SpWMMA API that
works on a warp-level matrix tile in Figure 16. A SpWMMA
breaks down to 16 sets, and each set includes a 32 × 32 × 1
outer product in Figure 13. Since the machine-level OHMMA
instruction computes an 8×16×1 outer product within a warp.
And each SpWMMA API call is complied to 8 OHMMA
instructions, as shown in Figure 17.

For sparse inputs, Av and Bv have fewer non-zeros elements
and thus achieve speedup by skipping OHMMA instructions
with predication operations. Predication operation is widely
used in GPGPU to skip instruction executions. We utilize
population count instructions (POPC, commonly supported in
GPGPU to count the number of “1” in binary numbers) to set
predication bits of OHMMA instructions. The number of “1”
in Av’s and Bv’s bitmaps identify the number of element-wise
multiplication in each row/column of the condensed sparse
matrix multiplication. By counting “1” bits in the bitmap
with POPC, we can determine which OHMMA instructions
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Fig. 15: The proposed SpWMMA includes 8 OHMMA instructions
in dense mode, which can be skipped during the sparse mode.

should be enabled. The right side of Figure 15 shows an
example of Set 4’s computation with POPC and OHMMA
instructions. We count Av’s and Bv’s bitmaps, indicating
that the sparse multiplication takes 12/20 multiplications in
each row/column. In our design, each OHHMA instruction
covers 8×16 condensed sparse outer product multiplication.
We should enable OHHMA0/2/4 by setting predication bits
and skip OHHMA1/3/4/5/6/7 for Set 4.

SPWMMA.MMA.SYNC.A_LAYOUT.B_LAYOUT.M32N32K1.set.f32.f32
{%RD0˜%RD7}, {%RB0˜%RB7}, {%RA0˜%RA7}, {%RC0˜%RC7};

Fig. 16: Our SpWMMA API.

HMMA.BOHMMA.32321.B32.B32 R3, R1, R2;
// ...
@p0 HMMA.OHMMA.8161.F32.F32 {R8, R9, R10, R11},

{R4, R5}, {R6, R7}, {R8, R9, R10, R11};
@p1 HMMA.OHMMA.8161.F32.F32 {R16, R17, R18, R19},

{R12, R13}, {R14, R15}, {R16, R17, R18, R19};
// ...
@p7 HMMA.OHMMA.8161.F32.F32 {R119, R120, R121, R122},

{R115, R116}, {R117, R118},{R119, R120, R121, R122};

Fig. 17: SpWMMA API complied to machine-level instructions.
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Fig. 18: Memory access pattern in the accumulation buffer.

2) Accumulation buffer: The accumulation buffer has two
modes, a dense mode and a sparse model. In dense mode, the
accumulation buffer configures each read/write port directly
connected to each output from FEOP units. In sparse mode, a
large amount of partial matrix is generated (e.g. 32×32 FP32
for the warp-tile in SpWMMA). We extend the accumulation
buffer to a multi-bank memory of 4KByte (32×32×4 Bytes).
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Furthermore, the gather-accumulate-scatter method, discussed
in Section III-B4, requires random access to multiple banks.
We design an operand collector to schedule bank reads and
writes to optimize the effective bandwidth.

a) Dense mode: Figure 18a shows an example of the
FEOPs’ outputs memory access to accumulation buffer port.
For simplicity, we use a 4× 4 example. Since one OHMMA
instruction is issued per cycle, the accumulation buffer uses
16 ports (e.g. the numbers in circles) for each FEOP output
(e.g. elements in the blue matrix).

b) Sparse mode: Figure 18b shows an example of ac-
cumulation buffer port memory access pattern when FEOP is
running the sparse matrix multiplication (e.g. SpWMMA in
Figure 15). We assume an 8× 8× 1 warp tile with both input
vectors being 50% sparse. Under this setting, OHMMA still
generates 16 outputs per cycle. But the accumulation of these
outputs may cause many bank conflicts as they are randomly
distributed across the partial matrix as shown in Figure 18b.

To solve this issue, we propose to integrate a small operand
collector in our accumulation buffer for better memory band-
width utilization. Operand collector [38] is a technique used in
NVIDIA’s GPU micro-architecture to overlap the reading on
the source operands from register file banks among multiple
instructions. Figure 19 shows an example of our accumulation
buffer’s memory access schedules with 4 operands per cycle
on 4 ports with(out) operand collectors. The operand collector
can significantly increase memory throughput by combining
non-conflict memory accesses from different instructions.

Figure 20 shows an overall design of our accumulation
buffer integrated with the aforementioned operand collector. It
can support both dense and sparse outer product. The sparse
mode is automatically turned on with the SpWMMA API.

VI. EVALUATION

We conduct comprehensive experiments with various micro
benchmarks and DNN models to evaluate our software and



hardware design, focusing on 1) how effective the bitmap-
based im2col can reduce the decoding overhead; 2) how much
performance our SpGEMM can improve upon a variety of
sparsity ratios; 3) how much we can speed up the inference
of diverse neural-network layers; and 4) how much hardware
overhead is introduced in terms of hardware area. Evaluation
results show that our design achieves significant performance
improvements of up to one order of magnitude compared to
the baselines, and imposes small hardware overhead.

A. Experimental Setup and Methodology

Simulation Platform We use Accel-Sim [33], a cycle-
accurate simulator based on GPGPU-Sim [36], to evaluate our
design. The simulator provides flexible front-end architecture,
optimizes cache and shared memory models, and improves
simulation accuracy significantly compared with previous gen-
erations. We model a Tesla V100 GPU [46] on the simulator.
To support SpWMMA instructions, we implement a cycle-
accurate tensor core model based on our hardware design in
Section V. In addition, we extend the simulator front-end to
support our instruction extensions as shown in Figure 15.

Baselines We choose CUTLASS [45] and cuDNN [9] as
dense GEMM and convolution baselines, respectively. CUT-
LASS is an open-sourced GEMM library that achieves high
performance comparable with cuBLAS [43]. cuDNN [9] is a
vendor-optimized, widely used library for DNN acceleration.
For our SpGEMM and SpCONV algorithms, we compare
with two baselines: the vendor-optimized sparse matrix library
cuSparse [42], and the state of the art research work of Sparse
Tensor Core [68]. For fair comparisons, our SpGEMM and
SpCONV implementations build on the same loop tiling and
software computation pipeline as CUTLASS [45].

DNN Models and Pruning We evaluate our algorithms
using various types of DNN models, including 1) three widely-
used CNN models: VGG-16 [56], ResNet-18 [27], and Mask
R-CNN [26]; 2) one RNN model for word-level language
modeling with a 2-layer LSTM encoder and a 4-layer LSTM
decoder that was also used in Sparse Tensor Core [68] and
we use the same configuration; and 3) BERT-base [13], a
representative and well-known attention-based model.

We fine-tune and prune the CNN models with Automated
Gradual Pruner (AGP) [69] on Distiller [70]. We use the
fine-pruned BERT-base model [53] [30] on the SQuAD task.
We also fine-tune and prune the RNN model with AGP
on Wikitext-2 [5] dataset. Unlike CNN models, BERT and
RNN models usually have high sparsity on only weights
but not feature maps. Note that our work does not affect
the model accuracy because we do not propose any new
pruning algorithm. Table II summarizes the sparse model
accuracy, which are consistent with previous pruning works.
The detailed layer-wise activation and weight sparsity ratios
are listed in Figure 22.

B. Performance of Bitmap-based Im2col

We first evaluate the performance of our bitmap-based
im2col, compared with dense im2col and CSR-encoded

TABLE II: Details of our evaluated sparse DNN model.

Models Pruning Scheme Dataset Accuracy
VGG-16

AGP [69]
ImageNet 88.86% (top 5)

ResNet-18 ImageNet 86.46% (top 5)
Mask R-CNN COCO 35.2 (AP)

BERT-base MP [30] [53] SQuAD 83.3 (F1 score)
RNN AGP WikiText-2 85.7 (ppl)

TABLE III: Normalized im2col time comparison using a typi-
cal convolution layer from ResNet-18 (feature map H/W=56, filter
H/W=3, in/out channel=128) under different sparsity ratios.

Sparsity (%) 0 25 50 75 99 99.9
Dense Im2col 1 1 1 1 1 1
CSR Im2col 101.3 67.1 45.2 14.5 4.7 1.2

Bitmap Im2col 8.31 6.87 4.73 2.5 1.5 1.1

im2col. We compare against the CSR [54] as it is one of
the most widely-used sparse matrix encoding methods. We
implement these three im2col algorithms based on PyTorch
ATEN library [49] and use a typical convolution layer from
ResNet-18 to do the comparison. We measure the execution
time of these algorithms and normalize the results over the
dense im2col case. We tune different feature-map sparsity of
0% - 99.9% and show the results in Table III.

The results reveal that our bitmap-based im2col significantly
outperforms CSR-encoded im2col across different sparsity ra-
tios, and is one order of magnitude faster when the sparsity ra-
tio is less than 50%. Only when the sparsity ratio is extremely
high, e.g., 99.9%, CSR-encoded im2col achieves a comparable
(but still lower) performance with our bitmap-based im2col.
This big discrepancy is attributed to the fact that CSR encoding
introduces two additional data-dependent memory reads for
each non-zero data access, while bitmap encoding compresses
non-zero data offsets into bits that significantly reduce the
operational intensity in im2col.

C. Performance of SpGEMM

We then evaluate the performance of our SpGEMM, com-
pared with CUTLASS, cuSparse, and Sparse Tensor Core [68].
Among of them, CUTLASS is the baseline of dense matrix
multiplication. We measure the execution time of the multipli-
cation of matrix A and matrix B (both are 4096×4096) with
various sparsity ratios. For cuSparse, we fix the sparsity of
matrix B to 99% and vary the sparsity of matrix A from only
90% to 99.9% because it is too slow when the sparsity of
matrix A is less than 90%. Figure 21 shows the results and
we make the following observations.

First, cuSparse is not applicable for accelerating sparse
neural networks. Although matrix B already has a high sparsity
of 99%, cuSparse becomes faster than CUTLASS (i.e., the
dense case) only when the sparsity of matrix A is higher than
95%. Even when the sparsity of matrix A is as high as 99.9%,
it achieves a speedup of only 1.67×. When the sparsity of
matrix A is 90%, it is 1.75 times slower than CUTLASS.
Thus, cuSparse is only useful for matrix multiplication with
extremely high sparsity, which rarely happens in practice.
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Fig. 21: Performance comparison of SpGEMM on the CUTLASS
baseline. cuSparse only outperforms the baseline when the sparsity
is large(>95%). CSR-based Sparse Tensor Core cannot fully exploit
dual-side sparsity. Our SpGEMM achieves a much higher speedup
and also supports a very wide range of sparsity of matrices A and B.

Second, Sparse Tensor Core [68] has a fixed speedup of
1.86× over CUTLASS, because it is designed to apply a fixed
pruning ratio of 75% (and thus the same sparsity ratio of 75%)
on only one sparse input matrix (matrix B in this experiment).
As a result, it cannot take advantage of the other input matrix’s
sparsity, which significantly limits the acceleration ratio.

In contrast, our bitmap-based dual-side SpGEMM exploits
the sparsity of both input and weight matrices and thus
performs much better than cuSparse and Sparse Tensor Core.
E.g., when the sparsity of matrix B is 99%, we achieve a
speedup of 13.4× over CUTLASS even when the sparsity of
matrix A is 0; and if the sparsity of matrix A increases to
99.9%, the speedup is as high as 23×, which is 13.7× better
than cuSparse under the same sparsity of matrices A and B
(i.e., 99.9% and 99%, respectively). Furthermore, even when
the sparsity of matrix B is 0, our SpGEMM becomes faster
than CUTLASS when the sparsity of matrix A is higher than
∼25%. Consequently, our SpGEMM achieves a significant
speedup over the dense case for a wide range of sparsity (i.e.,
unless the sparsity ratios of both matrix A and matrix B are
lower than ∼25%), making it highly useful for various SpMM.

D. Performance of Real Neural-Network Inference

Putting it together, we next evaluate the performance of real
neural-network inference using the aforementioned five DNN
models. For CNN models, we compare the performance in five
cases: 1) Dense Explicit is dense GEMM based on CUTLASS
with explicit im2col; 2) Dense Implicit is dense GEMM with
implicit im2col provided by cuDNN; 3) Single Sparse Explicit
is Sparse Tensor Core [68] with explicit im2col; 4) Single
Sparse Implicit only exploits weight matrix sparsity with
our SpCONV; and 5) Dual Sparse Implicit is our dual-side
sparsity method with both feature map and weight sparsity.
For BERT-base and RNN models without im2col, we compare
the performance in three cases: 1) Dense GEMM based on
CUTLASS; 2) Single Sparse GEMM based on Sparse Tensor
Core [68]; and 3) Dual Sparse GEMM which is our method.

Figure 22 shows the layer-wise and full-model speedup of
the five DNNs. We select a set of representative layers for
brevity because the rest layers have the same shape. For CNN
models, the speedup is normalized to Dense Implicit which
outperforms Dense Explicit due to optimized im2col operation
in convolution. Single Sparse Explicit [68] is also faster than
Dense Explicit by leveraging the sparsity of weight matrix, but
is not always faster than Dense Implicit with a speedup ranging
from 0.78× to 1.74× (1.36× on average). Benefiting from
our bitmap-based implicit im2col and sparse weight matrix,
Single Sparse Implicit is faster than Dense Implicit in most
cases, even it only takes advantage of weight matrix sparsity.
It achieves an average speedup of 1.92× ranging from 0.63×
to 4.5×. By exploiting dual side sparsity and bitmap-based
implicit im2col, our Dual Sparse Implicit method significantly
outperforms all the other methods and achieves a speedup of
1.25×- 7.49× over Dense Implicit. The average speedup is
4.38× which is 2.22× higher than Single Sparse Explicit [68].

Figure 22 also shows that our method achieves a speedup
close to the theoretical upper bound in some CONV layers. A
tight estimation of the upper bound is difficult because it de-
pends on the non-zeros’ distributions. The small speedups for
some layers (e.g., ResNet-18 layer 5-4) are due to their small
sizes, where the performance is bound by data movement.

For BERT-base and RNN models, the speedup is normal-
ized to Dense GEMM. Single Sparse GEMM [68] is always
faster than Dense GEMM but has a small speedup of only
1.20× - 1.77× (1.51× on average). Our method significantly
outperforms Single Sparse GEMM with a speed of 3.62× -
8.45×. Our average speedup is 6.74× which is 3.46× higher
than Single Sparse GEMM because Sparse Tensor Core [68]
only accelerate SpMM with a hard limit of 75%, while the
pruned BERT-base model [53] and RNN [69] has more than
90% weight sparsity. Recall the example in Figure 6, our work
can go beyond the fixed-ratio limit due to our sparse tiling
approach. For very sparse matrices, the proposed two-level
bitmap encoding also helps because some empty warps are
skipped as a whole, as shown in Figure 9.

E. Hardware Overhead

Finally, we evaluate the hardware overhead and power
consumption of shared buffers and queues using CACTI 7 [4]
with 22 nm process technology and scale them to 12 nm
[58]. We estimate Accumulation Operand Collector and Float
Point Adders overheads and energy consumption in RTL
implementation. As shown in Table IV, our design introduces
a total hardware overhead of 12.846 mm2 which is 1.5% of
the whole V100 die area of 815 mm2, and it consumes an
additional 3.89 W that is 1.6% of V100’s 250 W TDP.

TABLE IV: Area and power overhead estimation.

Module Name
Area Overhead
(mm2, 12 nm)

Power Consumption
(W, 12 nm)

Float Point Adders 0.121 2.35
Accumulation Operand Collector 1.51 0.46

Shared Accumulation Buffer 11.215 1.08
Total overhead on V100 12.846 (1.5%) 3.89 (1.60%)
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Fig. 22: Model-inference performance comparison for different layers in the five DNN models. Note that the theoretical speedup is a loose
upper bound, e.g., 100× speedup on 99% sparsity.

VII. CONCLUSION

In this paper, for the first time, we demonstrate the feasi-
bility of achieving a meaningful speedup for both SpGEMM
and SpCONV on GPU Tensor Core with minimal hardware
extension. The key insight is combing outer product of matrix
multiplication and bitmap-base sparse encoding to fully lever-
age dual-side sparsity for highly-efficient GEMM and implicit
im2col. Our design supports a wide range of sparsity ratios and
outperforms state-of-the-art baselines by up to one order of
magnitude with negligible hardware overhead, shedding light
for the next performance breakthrough of future GPUs.
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