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ABSTRACT
Analyzing video feeds from large camera networks requires
enormous compute and bandwidth. Edge computing has
been proposed to ease the burden by bringing resources to
the proximity of data. However, the number of cameras keeps
growing and the associated computing resources on edge
will again fall in short. To fundamentally solve the resource
scarcity problem and make edge-based live video analytics
scalable, we present an FPGA-based smart camera design
that enables efficient in-situ streaming processing tomeet the
stringent low-power, energy-efficient, low-latency require-
ments of edge vision applications. By leveraging FPGA’s
intrinsic properties of architecture efficiency and exploiting
its hardware support for parallelism, we demonstrate a 49x
speedup over CPU and 6.4x more energy-efficiency than
GPU, verified using a background subtraction algorithm.
CCS CONCEPTS
• Computing methodologies → Computer vision prob-
lems; • Computer systems organization → Distributed
architectures; • Hardware→ Hardware accelerators.
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1 INTRODUCTION
We are witnessing a huge increase in the number of
surveillance cameras in recent years. UK, for example, has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotEdgeVideo ’19, October 21, 2019, Los Cabos, Mexico
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6928-2/19/10. . . $15.00
https://doi.org/10.1145/3349614.3356027

one security camera for every 14 people, and the total
number of cameras in London alone will go up to one million
by 2025 [1]. Analyzing video feeds from the ever-growing
camera network poses huge system challenges, amongwhich
the cost of compute and network are major ones.

To ease the burden of live video analytics, edge computing
has been proposed to bring resources to the proximity of
data. However, edge server could still be bottlenecked by
limited compute resources as the number of associated
cameras increases. To fundamentally solve the resource
scarcity problem and make edge-based live video analytics
scalable, we argue that cameras should be designed smart
to be able to filter out a large portion of video content and
only send those necessary content to the edge server for
computation-intensive processing.
In this paper, we present an FPGA-based smart-camera

design that enables efficient streaming processing to meet
the unique characteristics of video surveillance applications.
Our design sits upon FPGA, not only utilizing its intrinsic
properties of low latency and energy efficiency, but also
exploiting its hardware support for parallelism and its unique
capability of reconfiguration. Compared to general-purpose
processors, FPGA can efficiently avoid system and memory-
copy overheads. Its hard-wired circuit design is also critical
for low-latency image processing. Compared to ASIC designs,
FPGA provides high flexibility to be re-configured to any
functionality. In addition, for applications that do not fully
occupy the on-board resources, FPGA enables flexible trade-
off to either allow concurrent execution of multiple small
(heterogeneous) tasks, or optimize a single task for low
latency or high accuracy by using more on-board resources.
Thus, we may jointly optimize the computation resource
allocation and task scheduling for heterogeneous tasks in an
energy-efficient manner.

To validate our design, we chose background subtraction
as a sample filter and fully implemented it on a state-of-the-
art FPGA platform. Our evaluation results show that com-
pared to CPU and GPU based solutions, our method is able to
provide the best performance trade-off between processing
latency and energy efficiency. Specifically, we achieved 49x
speedup on the number of images processed per second and
6.1x better energy-efficiency on Joule per frame over CPU.
Compared to using an RTX 2080 GPU, FPGA-based solution
is only 48% slower with more than 90% energy reduction.

https://doi.org/10.1145/3349614.3356027
https://doi.org/10.1145/3349614.3356027


2 DESIGN OVERVIEW
We adopt a hybrid live video analytics architecture comprised
of smart cameras, edge servers and cloud (Figure 1), and
primarily focus on video surveillance applications, e.g.,
traffic counting. Cameras are equipped with FPGA where
primitive computer vision (CV) functions like background
subtraction are implemented in a streaming fashion. Only
filtered frames are then sent to the edge server for further
processing such as DNN-based object detection and re-
identification. Although different applications may require
variant functions, we believe such a split between CV
primitives and batch processing tasks (e.g., DNN inference)
can be easily implemented while at the same time making
full use of the advantages of both FPGA and GPU.

Smart Cameras Edge Cloud

Early filtering on FPGA Cheap DNN Heavy DNN

Figure 1: Live video analytics pipeline with FPGA-
based smart cameras.

2.1 FPGA Primer
In a nutshell, FPGA [2, 3] is a device composed of an array
of re-configurable logic blocks, arithmetic engines (DSPs),
block RAM (BRAM), and switchable connection wires. Each
logic block is a look-up table (LUT) that can be configured
to any combined computation logic. With proper designs
and connections, the sea of LUTs and DSPs can collaborate
together and act as many parallel “cores" with arbitrary
parallelism design and customized functions for performance
(e.g., latency and throughput) optimization. BRAM works as
parallel random accessed storage on the chip. Typically, a
piece of off-the-shelf FPGA contains tens of thousands LUTs,
thousands of DSPs and hundreds of Block RAMs [4].

2.2 FPGA-powered Smart Camera
FPGA’s special advantages are appealing for achieving the
goals of live video analytics. FPGA is good at latency-
sensitive jobs due to the circuit-level customization on its
massively parallel computing units and on-chip storage
banks, saving a large portion of overheads in general-purpose
processors, including instruction fetch, cache miss, task
scheduling etc. In addition, FPGA’s Multiple Instruction, Mul-
tiple Data (MIMD) architecture guarantees high concurrency.
With proper circuit partition, it is able to support multiple
DNN models running at the same time without any time-
multiplexing. FPGA is naturally energy-efficient, making it
friendly for small form factor cameras.

GPU is one of the most popular acceleration hardware
because of its massively parallel architecture. However,
FPGA fits much better for streaming applications for
two reasons. First, GPU is optimized as an accessory
accelerator that are plugged in system buses like PICe.
Calling GPUs usually requires system interactions and
multiple memory copies between CPU and GPU, which
introduces a lot of additional overhead. However, with
the hardwired connection, FPGA has the ability to stream
data in and out directly, which eliminates both of those
system overheads and memory copies. Second, the energy
consumption is crucial to battery-powered mobile systems.
The gap in energy consumption makes FPGAmore attractive
for power-hungry continuous mobile vision.
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Figure 2: Smart camera with GPU.

Figure 2 shows a typical system architecture design of a
smart camera with a GPU accelerator connected to a CPU
through a bus connection. As can be seen, CPU is the central
of this system. It first fetches videos from the sensor and
arises GPU acceleration for image processing. After GPU
function call returns, CPU finalizes pre-processing. Although
several mobile GPUs share memory with CPU and thus has
less overhead, interactions between CPU and GPU persist
in current programming models. To reduce those overheads,
we propose a bump-in-wire architecture design as shown
in Figure 3. Our design lets FPGA directly get video stream
from the camera sensor and feed pre-processed images to
CPU, thus minimizing system overheads.
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Figure 3: Our smart camera design with FPGA.

However, FPGA suffers from two drawbacks. First, com-
pared to general-purpose processors, programming FPGA
uses hardware specific language and usually incurs a longer
developing and compilation cycle. Hence, we leverage
high-level synthesis, which uses C-based automated design
process that interprets an algorithmic description of a desired



behavior and creates digital hardware that implements that
behavior. Second, configuring FPGA takes longer time than
launching executables on CPUs or GPUs. We propose to
configure the most frequently used functions on FPGA and
will only re-configure FPGA when necessary.

3 BACKGROUND SUBTRACTION AND
FPGA ACCELERATION

In this paper, we use background subtraction, a CV primitive
widely used in video analytics tasks, as an example to show
how we leverage FPGA to improve the system performance.
Below we describe how background subtraction works,
followed by our FPGA acceleration design.

3.1 Background Subtraction
Themain purpose of background subtraction is to distinguish
the moving targets (called foregrounds) of the sequences
in the video stream from the background without prior
knowledge of the target information. In this paper, we use the
Gaussian Mixture Model (GMM) [5], a classic background
subtraction algorithm, to detect moving targets. GMM is
robust and shows good performance in various conditions
such as low illumination and highly compressed videos. The
algorithm works on individual pixels and thus there is no
across-pixel dependency, making it a good fit for FPGA for
parallel processing at pixel level.
Algorithm 1 describes how the GMM algorithm works.

The algorithm takes video frames as input and outputs
corresponding masks that label each pixel of the frame
whether it is background or foreground. For each pixel (x ,y)
in a frame, the algorithm maintains and filters this pixel
with a set of Gaussian Distribution Models (GDMs) that
describe the Gaussian probability with three parameters
⟨w,u,σ ⟩, wherew,u and σ are the weight, expectation and
standard deviation of GDM, respectively. This pixel will
be judged as background if it falls in one of the GDMs.
Equation 1 describes how the output of a pixel is calculated in
a GDM using a threshold λ. I (x ,y, t),u(x ,y, t),σ (x ,y, t) and
σ 2(x ,y, t) represent the pixel value, mean, standard deviation
and variance at time t and position (x ,y) in the video image
sequence, respectively. A pixel is background if the difference
between its current value at time t and its last mean value at
time t − 1 falls below the multiplication of λ and the most
recent standard deviation at time t − 1. The number of total
GDMs is usually empirically pre-defined. We set it to five by
default.

output =

{
0, |I (x ,y, t) − u(x ,y, t − 1)| < λσ (x ,y, t − 1)
1,otherwise (1)

Input: Original video frame
Output: Background subtracted frame
Initialization;
while Next frame do

while Next pixel do
while Next Gaussian Distribution Model (GDM)
do

if Match the current GDM then
Update thew,u and σ of the current
GDM;
Sort GDMs in descending order
according tow and σ ;

else
Reduce thew of the current GDM;

end
end
if Do not match any GDM then

if The number of GDMs reaches the upper
limit then

Remove the last GDM;
else

Add a new GDM;
end

else
Pass

end
Normalize thew of GDMs;
Obtain a cutoff index of GDMs based on a
customized threshold;
Determine if the pixel belongs to foreground;

end
end

Algorithm 1: GMM algorithm.

Before taking in the next pixel, the GMM algorithm
updates the current GDM according to Equation 2, where α
presents the update frequency which is used to against the
small variances in the background such as sun light changes
or shaking leaves.


u(x ,y, 0) = (1 − α)u(x ,y, t − 1) + αu(x ,y, t)
σ 2(x ,y, t) = (1 − α)σ 2(x ,y, t − 1) + α[I (x ,y, t) − u(x ,y, t)]2

σ (x ,y, t) =
√
σ 2(x ,y, t)

(2)

With the above algorithm, we are able to extract back-
ground in a frame and differentiate objects. We use back-
ground subtraction as precursor of object detection and
region of interest extraction to improve the efficiency of
video processing without negatively affecting accuracy. We
set a threshold to filter out static frames.When the number of



Figure 4: GMM accelerator on FPGA.

pixels of the moving object detected in a video frame exceeds
this threshold, we mark the corresponding original frame as
a frame of interest, and then pass it to edge server for DNN
inference. Otherwise, we mark the corresponding original
frame as absence of object of interest and drop it directly.

3.2 FPGA Acceleration
We have designed and implemented the GMM background
subtraction algorithm on FPGA. Our accelerator can quickly
and efficiently perform the pre-processing operation of GMM
background subtraction on the FPGA device, and thus reduce
the CPU load and the processing latency.

Figure 4 depicts the detailed design of accelerator engines
on FPGA. We apply two levels of parallelism, namely,
unrolling and pipelining. Each pixel within a video frame
is independent from others and thus can be executed
concurrently. However, the dimensions of a frame may range
from hundreds to thousands (e.g., 360x480, 1080x1920). It is
impossible to fully unroll all dimensions because the number
of parallel cores on FPGA is limited and fixed. We thereby
cut the input image into multiple slices with a fixed size
of pixel batch. Within each pixel batch, we fully unroll
the execution so that all Gaussian Engines are running
concurrently. When processing the current batch, FPGA
accelerator streams in the next pixel batch and streams out
the previous pixel batch. The sequences of video frames are
executed in such a three-stage pipeline manner. In order to
fulfill the execution parallelism, we also customize multi-
banked streaming input and output buffers as well as the
corresponding data preparing/collecting engine to avoid
memory conflicts or caching overheads. As we will show in
the next section, such an accelerator is able to achieve high
throughput and energy efficiency.

4 EVALUATION

Experimental setup. We ran the GMM algorithm on
several different types of hardware, including the ARM
Cortex-A53 CPU, Intel Core i7-3770 CPU, NVIDIA RTX
2080 GPU, and Xilinx FPGA using the Zynq UltraScale+
MPSoC ZCU102 Evaluation Kit [6]. The dataset used in the
experiments is a camera video of a traffic intersection with a
resolution of 360x480. Since GMM is composed of multiple
element-wise operations, our accelerator can easily scale out
to higher resolutions by extending streaming length.
For the experiments on Intel Core i7-3770 CPU and

NVIDIA RTX 2080 GPU, we ran the GMM algorithm
using OpenCV version 3.4.5 [7] on Ubuntu 16.04 LTS.
For the experiments on ARM Cortex-A53 CPU, we used
the Xilinx SDx [8] to compile and generate executive file
from source code written in C++ with OpenCV. For Xilinx
Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit, we used
Xilinx SDx and Vivado HLS to accelerate IP creation by
using C++ specifications to be directly targeted into Xilinx
programmable devices without manually creating RTL.

Results. Table 2 shows the resource utilization of FPGA
given by Vivado HLS. Our GMM implementation uses a
large portion of FPGA’s hardware resource. This is because,
to best optimized the performance, we employed a very deep
pipeline so that the accelerator could take new data in on
every clock cycle, which costed a lot of registers or Flip-Flop
(FF). In future work, we will further study how to utilize
other resources for higher parallelism and better balance.
Table 1 shows the performance of the GMM algorithm

on different hardware. We evaluate the throughput of each
device. We used img/sec as the metric as shown in Table 1,
which represents the average number of processed frames



Processor ARM CPU Intel CPU GPU FPGA
Device Cortex-A53 i7-3770 RTX2080 Zynq UltraScale+

IC tech (nm) 20 22 16 16
Freq (GHz) 1.4 3.40 1.0 0.3
Power (watt) 2.5 146.40 250 20

Img/sec 35.34 (1x) 232.56 (6.6x) 3333.33 (94.3x) 1736.11 (49.13x)
GFLOPS/sec 2.91 (1x) 19.13 (6.6x) 274.17 (94.3x) 142.72 (49.13x)
Joule/img 0.0707 (1x) 0.6295 (0.11x) 0.0750 (0.94x) 0.0116 (6.1x)

Table 1: Performance of GMMs Algorithm on Devices for 360x480 frame resolution.

Resource DSP BRAM LUT FF
Used 90 8 50,541 382,729

Available 2,520 1,824 274,080 548,160
Utilization 3 ≈ 0 18 69

Table 2: FPGA Resource utilization.

per second. The GMMs algorithm on all CPU and GPU
platforms were implemented using the OpenCV library.
Among all implementations, the beefy RTX 2080 GPU had the
best performance, achieving a throughput of up to 3,333.33
img/sec at a cost of 250 Watt. The throughput of using FPGA
has the second best throughput as high as 1,736.11 img/sec.
To put it into perspective, FPGA accelerator achieves more
than half of GPU performance with only less than 10% of
GPU power. In comparison, Intel and ARM CPUs achieve
lower throughput, with only 232.56 img/sec and 35.34 img/sec,
respectively. Note that the performance of FPGA accelerator
is typically constrained by the overall arithmetic unit and
BRAM storage. With larger FPGA, the performance of GMM
accelerator could be greatly improved.
Since different types of hardware have different parallel

opportunities, it is difficult to directly compare the energy-
efficiency between them. In order to provide a fair com-
parison, we present the results of Joule/img in Table 1. It
is defined as the average energy (joules) used to process
each frame of the video stream, and thus can represent the
efficiency of running GMM on different hardware platforms.
The power consumption of the RTX 2080 GPU is the highest
amount all the devices, as high as 250 Watts. The Intel
and ARM CPUs have a power around 146.40 Watts and 2.5
Watts, respectively. As shown in the last row of Table 1,
our implementation achieves the highest energy efficiency,
which is nearly 6x better than the ARM CPU that is the
second best hardware.

5 RELATEDWORK
Many systems are designed to use a combination of
cameras, edge clusters, and cloud resources to analyze video
streams [9–12], including low-cost model design [10, 13,
14], partitioned processing [15–18], adaptation [9, 19, 20]

and computation/memory sharing [21–23]. However, these
systems focus on video analysis and queries, not video pre-
processing. Our work leverages FPGA for efficient video
pre-processing and thus is complementary with the existing
work on video analytics.

Recently, FPGA has emerged as a promising solution of
customized accelerator for many applications, especially for
those that need stream processing [24–26]. By customizing
dedicated pipelines, concurrent processing units, specified
operators, etc., application designers can accelerate many
workloads by orders of magnitude using FPGA [27–32].
However, most of previous works are using FPGA as an
acceleration card on a bus. Our design directly bumps the
FPGA in the wire between front sensors. As far as we
know, we are the first attempt of efficient implementation
of background subtraction algorithm together with system
integration with video analytic applications that detect
moving objects in video streams.

6 CONCLUSION AND FUTUREWORK
The increasing popularity of large-scale camera deployments
and the advancement of urban intelligence have created
enormous challenges for computing capability and network
communication bandwidth. In this paper, by deploying
the GMM algorithm of background subtraction on the
FPGA to filter out the static video frames that do not need
to be processed, the burden of the smart camera on the
whole system is reduced, and the resource utilization is
improved. We believe that using FPGA to perform efficient
video processing can stimulate more explorations in future
research on edge computing.
In the future, we will integrate FPGA-powered smart

cameras with edge servers and cloud to build end-to-end
applications. We will further study the system challenges
of smart cameras at city-scale, where massive cameras are
working together with different workloads and jobs. In
addition, FPGA’s flexible configurability enables runtime
re-configuration and dynamic job scheduling. We will
further exploit the chances of software/hardware co-design
and running intelligent jobs with higher efficiency and
performance.
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