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ABSTRACT 

  Memory partitioning is widely adopted to efficiently increase 

the memory bandwidth by using multiple memory banks and 

reducing data access conflict. Previous methods for memory 

partitioning mainly focused on one-dimensional arrays. As a 

consequence, designers must flatten a multidimensional array to 

fit those methodologies. In this work we propose an automatic 

memory partitioning scheme for multidimensional arrays based on 

linear transformation to provide high data throughput of on-chip 

memories for the loop pipelining in high-level synthesis. An 

optimal solution based on Ehrhart points counting is presented, 

and a heuristic solution based on memory padding is proposed to 

achieve a near optimal solution with a small logic overhead. 

Compared to the previous one-dimensional partitioning work, the 

experimental results show that our approach saves up to 21% of 

block RAMs, 19% in slices, and 46% in DSPs. 

Categories and Subject Descriptors 

B.5.2 [Hardware]: Design Aids–automatic synthesis  

General Terms 

Algorithms, Performance, Design 

Keywords 

High-Level Synthesis, Memory Partitioning, Memory Padding 

 

1. INTRODUCTION 

To balance the requirements of high performance, low power 

and short time-to-market, field programmable gate array (FPGA) 

devices have gained a growing market against ASICs and general- 

purpose processors over the past two decades. Recently, FPGAs 

have also been used as general computing platforms as 

alternatives to CPUs and GPUs. Although FPGAs provide plenty 

computational units for parallelization, how to supply those units 

with the required high-speed data streams is a major challenge.  

This is especially true after loop unrolling and pipelining, when 

multiple data elements from the same array are often required 

simultaneously in a single clock cycle. Typical on-chip block 

RAMs (BRAMs) in FPGAs have two access ports. A 

straightforward solution is to duplicate the array into multiple 

copies [13]. Although the duplication approach can support 

simultaneous read operations, it may have significant area and 

power overhead and introduce memory consistency problem. A 

better approach is to partition the original array into multiple 

memory banks. Each bank holds a portion of the original data and 

serves a limited number of memory requests.   

Memory partitioning has been studied in the distributed 

computing domain for decades [8, 15], where data elements are 

partitioned into different processors to reduce communication 

among the processors. While some of the partitioning algorithms 

in distributed computing can be directly applied to high-level 

synthesis, the freedom of creating memory banks tailored to the 

target application can lead to more efficient memory partitioning 

algorithms for high-level synthesis [19, 3, 6, 20, 12]. In [19], 

different fields of a single structure are partitioned into multiple 

memory banks for data parallelism based on profiling results. In 

[3], a single array is decomposed into disjoint memory banks for 

storage minimization purposes through accurate lifetime analysis 

using a polyhedral model. The purpose of the memory partitioning 

algorithm presented in this paper is to improve system 

performance by assigning memory accesses to disjoint memory 

banks and providing simultaneous conflict-free memory accesses 

[6, 20, 12], which is orthogonal to the problem in [3]. In [6], an 

automated memory partition algorithm is proposed to support 

multiple simultaneous affine memory references to the same array. 

The algorithm can be extended to efficiently support memory 

references with modulo operations (common after data reuse 

using scratchpad memory) with limited memory paddings [20]. In 

[12], memory accesses in different loop iterations can be 

partitioned into different memory banks and scheduled into the 

same cycle to minimize the number of required memory banks. 

  However, previous memory partitioning algorithms are 

designed for one-dimensional arrays, while many designs for 

FPGAs are often specified by nested loops with multidimensional 

arrays—such as image, video, and scientific computing 

applications. In previous works, a multidimensional array is first 

flatted into a single-dimensional array before memory partitioning. 

However, memory addresses after array flattening are dependent 

on the array size. For different array sizes, different partitioning 

schemes are generated, many of which are suboptimal. In this 

paper we focus on providing an effective and efficient memory 

partition algorithm for multidimensional arrays based on linear 

transformation. 

The main contributions of this work are described as follows: 

1) A linear-transformation-based multidimensional memory 

partition algorithm is proposed to generate the smallest 

memory bank numbers regardless of the size of input array. 

2) An optimal inner-bank offset generation scheme is proposed 

based on point counting in polytopes. 
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3) A heuristic solution based on memory padding is proposed 

to achieve a near-optimal inner-bank offset generation with 

a comparative small logic overhead and storage overhead.  

The remainder of this paper is organized as follows: Section 2 

provides a motivational example for the multidimensional 

memory partitioning; Section 3 formulates the problem, and 

Section 4 describes the detailed solution; Section 5 analyzes the 

experimental results, and is followed by conclusions in Section 6. 

2. MOTIVATIONAL EXAMPLE 

Our motivational example, as shown in Fig. 1(a), is from a loop 

kernel of the 2D denoise algorithm, which is a key application in 

medical image processing [2]. The kernel has five accesses to the 

array A in the inner loop. Fig. 1(c) shows the access pattern of the 

inner loop iteration and the partition based on linear 

transformation, where x0 is the lower-dimension index and x1 

denotes the index in higher dimension. The light points in Fig. 1(c) 

represent the data elements in the array with the dark points 

representing the elements accessed in a single loop iteration. We 

assume that the physical memory has one read port—only one 

data element can be read from a physical memory in each clock 

cycle. To improve the processing throughput of the loop kernel, 

we need to pipeline the execution of successive inner loop 

iterations, which means that multiple accesses to the same array 

will happen in one clock cycle. If array elements are not properly 

allocated in multiple physical memory banks, memory conflicts 
will occur and pipeline performance will be impacted. 

Previous memory partitioning solutions mainly focus on 1-D 

arrays, as in [6]. It flattens the array first, as shown in Fig. 1(b), 

and then partitions the flattened array. In order to fully pipeline 

the loop, five elements of data are required in each clock cycle. 

Thus the minimum number of memory banks for a non-conflict 

partitioning is five. However a cyclic partition with five banks can 

not satisfy the non-conflict constraint according to the code in Fig. 

1(b). Take iteration (i, j)=(1, 1) for example, the second reference 

(A[64*j+i-1]=A[64]) and the forth reference 

(A[64*j+i+64]=A[129]) will access the same bank (64%5 = 

129%5). Using the approach in [6] on the flattened array, we can 
prove that at least six banks are required. 

int A[64][64]; 
for j= 1 to 62 

  for i = 1 to 62 

     b[j][i] = f(A[j][i], A[j][i-1], A[j-1][i ], A[j+1][i], A[j][i+1]); 
//accesses to down, up, left, and right 

(a) 
int A[4096]; 

for j= 1 to 62 

  for i = 1 to 62 
b[j][i] = f(A[64*j+i], A[64*j+i-1], A[64*j+i-64], A[64*j+i+64], 

A[64*j+i +1]); 

                         (b)  
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Fig. 1 Denoise: (a) original loop kernel, (b) loop kernel with 

flattened array, (c) multidimensional partitioning based on 

linear transformation 

In fact, using the linear transformation based multidimensional 

partitioning method proposed in this work, the original code (Fig. 

1(a)) can be fully pipelined with five memory banks. As 

illustrated in Fig. 1(c), the data elements on the same dotted line 

will be partitioned into the same memory bank, e.g., the data 

A[0][2] and A[1][0] are in the same bank. Whereas, the five data 

elements accessed in one inner-loop iteration are mapped into five 

different banks; i.e., in iteration (i, j)=(1, 1), the second reference 

(A[1][0]) and the forth reference (A[2][1]) are no longer in the 

same bank. Based on the linear transformation method we 

proposed, the code in Fig. 1(a) is partitioned with a linear 

transformation    (      )    (as shown in Fig. 1(c)). We 

will describe the detailed partitioning algorithm in Sections 3 and 

4. 

3. PROBLEM FORMULATION 

In this paper we will describe how we partition several 

multidimensional memory references in a multidimensional loop 

nest to separate memory banks to enable loop pipelining with 

simultaneous memory accesses. For simplicity, loop initiation 

interval (II) and physical memory port number are both assumed 

to be 1 in this paper. Algorithms and formulations can be 

extended for any constant loop initiation interval and physical 

memory port number by scheduling and mapping the accesses 

onto different time intervals and physical memory ports (as 

presented in [6]). 

DEFINITION 1 (ITERATION DOMAIN [10]) Given a l-level loop nest 

with the iteration variables              from outermost to 

innermost loop, the iteration vector is a vector of iteration 

variables,  ⃗  (            )
 . The iteration domain D is a set of 

all iteration vectors in the loop bounds. 

DEFINITION 2 (AFFINE MEMORY REFERENCE) Given a 

d-dimensional array, a d-dimensional affine memory reference to 

the array is a set of linear combinations of iteration vectors and a 

constant:  

  (

         

   
             

)  (              )  

where        is the coefficient of the j-th iteration vector in the 

k-th dimension.  

DEFINITION 3 (DATA DOMAIN) Given a loop with m affine memory 

references              on the same array, the data domain 

M of the array is defined as a set of all memory elements accessed 

by any memory reference in any loop iteration. Assuming the 

memory element accessed by memory reference    in iteration  ⃗ 

is represented as   ( ⃗), then 

M = ⋃   ( ⃗) ⃗         

DEFINITION 4 (MEMORY PARTITION) A memory partition of an 

array with data domain M is described as a pair of mapping 

functions (f( ), g( )),     , where f( ) is the bank number 

that   is mapped to, and g( ) is the corresponding inner bank 

offset. Also f( )  0, and g( )  0. 

  After memory partitioning, a data element in the original array 

is allocated on a new memory bank with a new array offset (inner 

bank offset). The validation of the partitioning is interpreted as 

two distinct data elements mapped onto either different memory 

banks or the same bank with different inner bank offsets. A valid 

memory partition of an array with data domain M is described as 

        , 

      ⇔ (f(  ), g(  )) (f(  )   g(  )) 



 

 

where (f(  ), g(  )) (f(  )   g(  )) means 

f(  ) f(  )     or     f(  ) f(  ), g(  ) g(  ) 

  An access conflict between two memory references    and    

(       ) means that   ⃗   ,   ( ⃗)   ( ⃗)    

f(  ( ⃗)) f(  ( ⃗)) 

This access conflict constraint is under the assumption that each 

physical memory only has one port. With the preceding 

definitions and formulations, we use Problem 1 defined below to 

formulate the multidimensional memory partitioning problem. 

Eqn. (1) defines the optimality of memory partitioning, as our 

main objective is to minimize the memory bank number. Eqn. (2) 

is responsible for the validity of the partitioning. Eqn. (3) ensures 

no conflict access in any iteration, which is required for 

fully-pipelined loops.  

PROBLEM 1. (BANK NUMBER MINIMIZATION).  Given a loop with 

m affine memory references              on the same array, 

find the optimal memory partition f, such that:  

 

The storage overhead minimization problem is formulated as 

Problem 2 under the same valid partition and non-conflict 

constraints as Problem 1.  

PROBLEM 2 (STORAGE MINIMIZATION). Given a loop with m affine 

memory references              on the same array, a 

memory partition number N, find the inner bank offset  function 

g and check globally for consistency such that:  

 

4. PARTITIONING ALGORITHM 

In this paper, we propose a Linear Transformation Based (LTB) 

memory partitioning algorithm. The algorithm is general enough 

to cover the solutions from previous array flattening based 

approaches. We only consider cyclic partitioning strategy in this 

work. Other partitioning schemes (as block and block-cyclic) can 

be applied based on this solution.  

A d-dimensional memory index  ⃗ (            )
  is first 

transformed by  ⃗  ⃗  ⃗ , where  ⃗ (            ) ,     . 

According to the properties of cyclic partitioning, the bank 

mapping function f is described as 

      ( ⃗)  ( ⃗  ⃗)    . 

  From a geometrical point of view,  ⃗  ⃗   represents a series 

of hyperplanes in the data domain, where    , and  ( ⃗) 

assigns the hyperplanes to different banks according to the value 

of c%N. The traditional array flattening approach is just a special 

case of LTB when  ⃗ is decided by the dimensional width, as 

shown in Example 1. 

EXAMPLE 1 (Flattening Partition) Supposing that the dimensional 

width of the target array from low dimension to high dimension is 

w0,…,wd-1, the traditional approach will first flatten the reference 

into one dimension. Then the array is cyclically partitioned, using 

modulo and division operations to generate the bank number and 

inner bank offset. The bank mapping function   and inner bank 

offset function   are described as below. 

 ( ⃗)  (     ∏        
        ∏        

     

           )    

 ( ⃗)  (     ∏        
         ∏        

     

           )    

We can see that the flattening partition is just a special case in 

LTB method with the coefficient  ⃗  equal to 

(          ∏       
    ∏       

   ). 

4.1 Bank Mapping 

Extending the constraint provided by work in [6], we build our 

own non-conflict constraint for d-dimensional array references as 

Theorem 1. It offers a sufficient condition for the conflict-free 

accesses regulated by Eqn. (3). With the constraint, we can find 

the candidate linear transformation vectors that meets the 

requirement. Assuming that there are two d-dimensional array 

references as  

   (

         

   
             

)  (              )  and  

   (

         

   
             

)  (              ) , 

the bank mapping for    and    with a linear transformation 

vector  ⃗ (            ) is 

 (  )  ( ⃗   )       and   (  )  ( ⃗   )    .  

THEOREM 1. Assuming that a d-dimensional array is accessed by 

two references    and    in an l-level loop nest, the array is 

cyclically partitioned into N banks with a linear transformation 

vector  ⃗  and a bank mapping function   so that the 

simultaneous accesses are not in conflict in the iteration domain, 

if 

        ( ⃗   
   ⃗   

     ⃗     
   )    ⃗   

      (4) 

where  

   (                  ),    (                     ),  

                      ,          

The detailed proof is in Appendix. 

EXAMPLE 2. For a two dimensional array A[64][64] with two array 

references A[j][i], and A[j+1][i+1] in the inner loop iteration, the 

linear transformation vector (  ,  )=(1,2) and N=2 meets the 

non-conflict constraint according to gcd(0,0,2)=2   (1+2). 

The candidate  ⃗ can be generated by exhaustive enumeration. 

We can use some constraints to reduce the searching space. First, 

it is obvious that    (               )   . Second, the 

optimal partition number is the number of the references m. For 

this target N, the searching space for the  ⃗ is Nd (     
        ). If  ⃗ is a candidate, for       and      

              ,  ⃗  (                  )  also meets 

the constraint. In addition, the theorem can be easily extended to 

multiple references by detecting the conflict between each pair of 

references.  

4.2 Constructing Inner Bank Offset Functions 
  Using techniques in Section 4.1, the candidate linear 

transformation vectors can be generated. In this section, we will 

Minimize  bank_num=           (  )}           (1) 

Subject to            (f(  ), g(  )) (f(  )   g(  )) (2) 

    ⃗             (  ( ⃗))   (  ( ⃗)) (3) 

Minimize storage=∑   
   
                   

Subject to                    (  )   (  )  

      ,  (  )    

           (f(  ), g(  )) (f(  )   g(  ))  

    ⃗             f(  ( ⃗)) f(  ( ⃗)) 
  

 



 

 

specify how to calculate the inner bank offset for a given linear 

transformation vector. The principle is to keep the validation of 

the partitioning, which is that two different data can’t be mapped 

to the same physical location. Our goal is to optimize Problem 2, 

for with different mapping functions, some physical locations may 

be mapped without any data so that an extra storage overhead is 

induced. Two approaches are introduced in this section.  

4.2.1 Optimal Approach 
An optimal approach to generate the inner bank offset is to scan 

the data in sequence. Since all of the data elements on the same 

hyperplane set ((   )    ) are in the same bank, scanning 

the data along the hyperplane set in sequence and use the 

sequence number as the inner bank offset can generate a valid 

memory partition without any extra storage overhead. The 

problem can be converted by integer point counting in a polytope 

using Ehrhart polynomial [9]. Two polytopes (a base polytope and 

an offset polytope) are formulated for a given point    
(  

    
        

 ). Then the sum of the point number in the two 

polytopes is used as the inner bank offset for the point. We 

illustrate this process in Example 3. The detailed formulation and 

theory of integer point counting using Ehrhart polynomial is given 

in Appendix. 

EXAMPLE 3. Given a candidate vector  ⃗=(1,2), the hyperplanes 

are described as         . For a given point   = (3,1), the 

two polytopes are formed as in Fig. 2, in which the base polytope 

contains the hyperplanes with    , and the offset polytope is on 

c=5. According to the theory in [9], the point numbers in the two 

polytopes are the functions of   and   
  separately. By using the 

Ehrhart tool in Polylib [21], we get the Ehrhart polynomials for 

each polytope as       and        . 

     ( )＝
 

  
    ( 

 

  
  )

    
 

  
    

 

  
  

 

 
 
 

 
  

 

 
 
 

 
  

 

 
  

 

  
   

       (  
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 ,  

where [                               . 

When   =(  
    

 ) = (3,1), c=5,  

     ( )=
  

  
 

 

  
 

 

 
  ,          ,  

 (   )                  

Using Ehrhart’s point-counting method, we have the optimal 

solution to Problem 2, but we find that the area required for 

computing the optimal g fuctions can be very large. In Example 2, 

four multiplications and two tables (generating the constants in the 

end of the polynomials) are used. Although we can get the optimal 

solution to both Problem 1 and Problem 2, compared to the 

straightforward array-flattening method, the complex address 

generation in this method makes it not worth doing. As a result a 

trade-off between practicality and optimality is considered using a 

heuristic approach presented next. 

 
Fig. 2 An example of Ehrhart’s point-counting 

4.2.2 Heuristic Approach 

  Our heuristic method to efficiently find a linear transformation 

vector with a comparative simple inner bank offset function g is to 

do memory padding in the data domain. As stated before, a linear 

transformation vector  ⃗ for flattening partition is 

 ⃗=(          ∏       
    ∏       

   ). 

It may lead to suboptimal partitioning as we depicted in the 

motivational example. Our memory padding method finds the   

coefficient vector  ⃗ with the validity guaranteed based on this 

given vector. Firstly, a padding vector  ⃗=(            ) is 

introduced, in which    represents the increase of size in k-th 

dimension. For a sub-domain formed by dimension j and 

dimension k (       ) with a given bank number N and 

bank linear transformation vector  ⃗  (           ), a 

padding size   , a valid partition should satisfy 

  (     )                 . 

It is equal to Eqn. (5). 

                    (     )                    (5) 

The new linear transformation vector  ⃗ is  

 ⃗=(            ∏        
    ∏        

   ), 

where                .  

  The geometric meaning of the memory padding is that as each 

hyperplane only has one data element with the vector based on 

array flattening, the address is actually generated by scanning 

along a certain dimension. With a certain bank number, the 

allocation of the banks needs to be continuous between the last 

data element in the previous line and the first data element in the 

next line so that the partitioning validity is met. Fig. 3 shows an 

example for our method. To meet the validity of the partitioning 

with an optimal bank number five, dimension    is increased by 

2 (size increased from 64 to 66).  

 
Fig. 3 An example for memory padding 

The above discussion is based on a fixed dimension scanning 

order. But in fact the value of the element in  ⃗ implies the 

scanning order. For example,      implies the scanning starts 

from dimension k. Thus when we change the value of  ⃗ in a 

range, the scanning order of the array and the total padding size 

will be changed. Through this, we minimize the extra storage 

overhead induced by memory padding. The padding size on each 

dimension is bounded within N, as each dimension is cyclically 

partitioned according to bank mapping function f. Eqn. (5) could 

be simplified as        , then we have 

               ⌈
  

 
⌉                  (6) 

The maximum padding size on a d-dimensional array with N 

partition banks is calculated as 

(   )  
∏       

   

  
 (   )  

∏       
   

  
+    (   )  

∏       
   

    
   

4.3 Overall Flow  
  This section describes the overall flow while using memory 

padding based heuristic method. As the interplay between the 

padding size and the bank number, we give our flow to find the 
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tradeoff between the optimal partition and extra storage overhead. 

The lower bound for the bank number N is the reference number 

m in the inner loop iteration. First, we fix the bank number N 

(    ). Second, we find the possible padding 

 ⃗=(            ) under various array dimension orders with 

linear transformation coefficient  ⃗ (            ). And we’ll 

get the best candidate vector  ⃗  with the total padding size 

minimized. Then we check whether  ⃗  satisfy the conflict-free 

constraint in Eqn. (4) with the bank number N. The detailed LTB 

algorithm is described as follows. 

Step 1: Give the partition bank number    . 

Step 2: Find every possible  ⃗ (             ) with a 

padding vector  ⃗ according to Eqn. (6). Queue all the  ⃗ by the 

increase of the total padding size. Find  ⃗  with the minimum 

padding size. 

Step 3: Check if  ⃗  meets the conflict-free requirement 

according to Eqn. (4). If  ⃗  cannot meet the requirement, find 

the next solution in the queue and recheck the conflict-free 

constraint. 

Step 4: If there is no solution for N, N=N+1, go back to Step 2. 

The complexity of searching for an array dimension order is 

∏    
   . And according to Eqn. (6), we can actually calculate the 

padding size based on a given dimension order. This flow is 

capable to find a solution for both Problem 1 and Problem 2. It is 

optimal in Problem 1, and it provides a near optimal solution to 

Problem 2 with a bounded maximum extra storage overhead and a 

low complexity. Our experiments prove that in some cases the 

padding method can find an optimal solution and in other cases 

the gap between it with optimality is small. 

5. EXPERIMENTAL RESULTS 

5.1 Experiment Setup 

  The automatic multidimensional memory-partitioning flow is 

implemented in C based on the open source compiler 

infrastructure ROSE [14]. ROSE is a flexible translator supporting 

source-to-source code transformation. We use Vivado from Xilinx 

[17] as the high-level synthesis tool. The RTL output is 

implemented by Xilinx ISE 13.1 [18] on the target FPGA platform 

Xilinx Virtex-6. The implementation flow is illustrated in Fig. 4. 

The high-level abstraction is parsed into the flow with the 

partition directives and constraints, such as target II. After 

memory partitioning analysis and source-to-source code 

transformation, the transformed code is synthesized by the 

high-level synthesis tool and followed by logic synthesis. 

Six loop kernels are selected from the real applications as the 

benchmarks. As we focus on the effects brought by different 

access patterns, several of the benchmarks are the loop kernels 

from the same application with different access patterns. 

DENOISE_1 and DENOISE_2 are from the Rician-denoise 

algorithm [11] in medical image applications. DENOISE_1 is the 

original access pattern which accesses five data elements in the 

inner-loop iteration. DENOISE_2 is the access pattern by 

unrolling the loop in DENOISE_1 by 2. MOTION_LV and 

MOTION_C are the different loop kernels of motion 

compensation from official H.264 decoder JM 14.0 [4]. 

MOTION_LH is the motion compensation for luma samples in 

the video frame in the vertical direction, and MOTION_C is the 

interpolation for the chroma components. BICUBIC_INTER [1] is 

from bicubic interpolation process. And SOBEL [16] is from 

Sobel edge detection algorithm. (The detailed access patterns of 

the benchmarks are illustrated in Appendix) 
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Fig. 4 Implementation flow 

5.2 Experimental Results 

The detailed experimental results are shown in Table 1, Table 2 

and Table 3. We compared the experimental results for the 

state-of-art 1-dimensional partition algorithm with flattened arrays 

and our proposed linear transformation based algorithm (LTB). 

Table 1 shows the percentage of extra storage overhead when 

applying different memory size on DENOISE_1. The results after 

source-to-source transformation are shown in Table 2. And Table 

3 shows the results after synthesizing. The algorithm from [6] for 

the flattening memory partitioning is re-implemented for 

comparison. As shown in Table 2, we list the original II of the 

pipelined loop and the target II. Our target throughput is II=1. 

The partitioning in both of the methods can meet the throughput 

requirement. The bank number for achieving the target throughput 

by using the flattening method and LTB are represented in the 

next two columns, followed by the essential padding size after 

applying LTB. Physical resource usage (block RAMs, slices, and 

DSPs) and timing information are reported by Xilinx ISE, and 

power estimation is given by Xilinx XPower Analyzer. The block 

RAMs are dual-port in the Xilinx Virtex-6.  

Table 1 represents the percentage of padding size compared to 

the original array size (also the optimal solution). 140 different 

array sizes are applied in the experiments. And we found that the 

padding size is related tiny. In Table 2, we can see that our 

proposed LTB method improves the partitioning bank number on 

all of the six benchmarks. And five benchmarks have extra 

padding by using our LTB approach (DENOISE_1, DENOISE_2, 

MOTION_C, BICUBIC_INTER, and SOBEL). As each piece of 

the partition is relatively not too large and can fit in a BRAM, the 

padding size is totally negliable. However, if the arrays in the 

benchmarks are originally large, memory padding may introduce 

extra memory overhead; this means that more block RAMs are 

required. 

Table 3 represents the use of logical units on FPGA. The 

utilization of block RAMS, Slices and DSPs are very related to 

the bank number. The average BRAMs improvement after using 

LTB is up to 21%. In the benchmarks DENOISE_2 and 

MOTION_C, the reduction of DSPs is up to 96% and 100%. In 

these cases, the partitioning number is reduced to a power of 2, 

which can be implemented as data shifting rather than using DSPs 

for the dividers. Although the use of the physical resources in 

DENOISE_1, DENOISE_2, BICUBIC_INTER, and SOBEL is 

reduced, the power estimation increases in these benchmarks, 

especially in SOBEL (about 48.85%). Based on our analysis of 

the transformed code, LTB uses more logic to implement the 

address generation for the array indices due to the extra padding 

size (It introduces an extra multiplication in each index). We 

could optimize it with some common address generation strategies 

(as the scheme proposed in [12]). However, in the benchmark 

SOBEL, as the flattening method uses 25% more block RAMs in 

this benchmark and the critical path is much longer than the one in 

LTB, the target CP (5ns) cannot be met. 



 

 

In all, there is an average 21% reduction in BRAMs, 19% 

reduction in slices, 46% reduction in DSPs, and 14.69% more 

overhead in power. The CP has a small increase of 0.6% on 

average. 

Table 1 Storage overhead of padding method 

Array Size(# of data) Padding Rate 

<1000 0.0706 

1000~5000 0.0281 

5000~10000 0.0161 

10000~20000 0.0116 

>20000 0.0098 

Table 2 High-level partitioning results 

 

 

Original 

II 

Target 

II 

Bank 

(Flatten) 

Bank 

(LTB) 

Padding 

size 

DENOISE_1 5 1 6 5 64 

DENOISE_2 8 1 10 8 128 

MOTION_C 4 1 6 4 64 

MOTION_LV 6 1 7 6 0 

BICUBIC_INTER 4 1 6 5 64 

SOBEL 9 1 12 9 64 

Table 3 Synthesis experimental results 

  Block 

RAM 
Slice DSP CP 

(ns) 
Power 
 

DENOISE_1 Flatten 6 531 8 3.826 537 

LTB 5 441 8 4.451 685 

comp.(%) -16.7 -16.9 0 16.3 27.5 

DENOISE_2 Flatten 10 1114 75 4.995 1097 

LTB 8 767 
 

3 4.563 1367 

comp.(%) -20 -31.1 -96 -8.6 24.6 

MOTION_C Flatten 6 515 4 4.215 670 

LTB 4 255 0 4.068 484 

comp.(%) -33.3 -50.5 -100 -3.5 -27.8 

MOTION_ 
LV 
 

Flatten 7 627 9 4.143 1263 

LTB 6 601 9 3.846 1026 

comp.(%) -14.3 -4.1 0 -7.2 -16.15 

BICUBIC_ 
INTER 
 

Flatten 6 456 4 3.870 512 

LTB 5 441 4 4.451 672 

comp.(%) -16.7 -3.3 0 15 31.25 

SOBEL Flatten 12 1302 105 5.222 1441 

LTB 9 1195 15 4.808 2145 

comp.(%) -25 -8.2 -85.7 -7.9 48.85 

AVERAGE(%)  -21 -19 -46 0.6 14.69 

6. CONCLUSIONS 
  Memory partitioning is a crucial technology to enable 

data-level parallelism in FPGA designs. In this work we propose 

an automatic memory-partitioning method for multidimensional 

arrays. Linear transformation on the multidimensional array 

indices is introduced to extend the design space for the possible 

optimal solution. An optimal solution based on Ehrhart points 

counting and a heuristic solution based on memory padding are 

proposed. Experimental results demonstrate that compared with 

the state-of-art partitioning algorithm, our proposed algorithm can 

reduce the number of block RAMs by 21%. 
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Appendix 
1. The proof of Theorem 1 

Assuming that there are two d-dimensional array references in 

the iteration domain as  

   (

         

   
             

)  (              )  and  

   (

         

   
             

)  (              ) . 

The bank number mapping functions with a linear 

transformation vector  ⃗ (            ) are 

 (  )  ( ⃗   )       and   (  )  ( ⃗   )      

THEOREM 1. Assuming that a d-dimensional array is accessed by 

two references    and    in an l-level loop nest, the array is 

cyclically partitioned into N banks with a linear transformation 

vector  ⃗  and a bank mapping function   so that the 

simultaneous accesses are not in conflict in the iteration domain, 

if 
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   ⃗   

     ⃗     
   )   ⃗   

        

where  

   (                  ),    (                     ),  
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Proof 

The converse-negative proposition of theorem is proved as: 
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where  
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2. Ehrhart’s Points-Counting Theory 

The following definitions and theorems are referenced from [9], 

as supplemental materials to section 4.2.1 to help understand the 

optimal approach. 

Let Q denote the set of rational numbers and Z the set of 

integers. A convex polyhedron is defined by a finite set of linear 

inequalities: 

           |         

where A is a rational matrix and b a rational vector. 

 

 

Definition 1 (homothetic-bordered system [9]). Let HN, N= (n1, 

n2, …, nq), be a system defined by constraints of the form 
∑     ∑      , ∑     ∑      , ∑     ∑     

 , where the   ’s, the   ’s and the  ’s are given integers, the 

  ’s are free variables and the   ’s are positive integral 

parameters. 

Such a system is homothetic-bordered if and only if the polytope 

it defines has vertices whose coordinates are affine combinations 

of the parameters. 

Counting the number of integer points is based on the 

decomposition of a parametric polytope into several 

homothetic-bordered systems, associated with validity domains. 

Example 

 

   
 and    

are homothetic-bordered system and    
 is not 

homothethic-bordered system. 

 

Definition 2 (periodic number [9]). A one-dimensional periodic 

number u(n)= [u1, u2, …., up]n is equal to the item whose rank is 

equal to n mod p, p is called the period of u(n). 

 ( )  

{
 

 
         (     ) 

         (     ) 
 

        (     ) 

 

Example 

 

Definition 3 (denominator [9]). The denominator of a rational 

point is the lowest common multiple of the denominators of its 

coordinates. The denominator of a rational polyhedron is the 

least common multiple of the denominators of its vertices. 

Theorem 1 (Ehrhart’s fundamental theorem [9]). The 

enumerator    of any homothetic-bordered k polyhedron    is 

a polynomial in n of degree k if    is integral; and it is a 

pseudo-polynomial in n of degree k whose pseudo-period is the 

denominator of    if    is rational.  

EXAMPLE Bank mapping function:   (      )  , 

          , for (     ) = (32,15), find the inner bank 

address. 

There are two polytopes: base polytope and offset polytope 

 The base polytope is  

{

           
          

   
   

 

There are four Ehrhart polynomials for the base polytope. For 

different domain of d, they are: 

Domain1: c -197 >= 0 

Ehrhart Polynomial:      ( )  845 



 

 

Domain2:  c -133 >= 0 and - c + 197 >= 0 

Ehrhart Polynomial: 
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Domain3:  c -69 >= 0 and - c + 133 >= 0 

Ehrhart Polynomial:      ( )  
  

 
          

   

 
  

Domain4: - c + 69 >= 0 and c -5 >= 0 

Ehrhart Polynomial: 
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 The offset polytope is  

{

         
     

 

       
 

    
    

    

 

       (  
 )  

 

 
   

     
 

 
  

(     ) = (32,15), c=62, 

 (     )       (  )         =       203 

3. Detailed descriptions of the benchmarks 

The detailed description of the benchmarks is listed in Table 2. 

DENOISE_1 and DENOISE_2 are from the Rician-denoise 

algorithm [11] from medical image applications, and their 

access patterns are shown in Fig. 5(a), Fig. 5(b). DENOISE_1 

and DENOISE_2 are the original access patterns in the 

application. DENOISE_2 is the access pattern by unrolling 

DENOISE_1 by 2. MOTION_LV and MOTION_C are the 

different loop kernels of motion compensation from official 

H.264 decoder JM 14.0 [4]. MOTION_C is the interpolation for 

the chroma components. MOTION_LV is the motion 

compensation for the luma samples in the video frame in the 

vertical direction. Their access patterns are shown in Fig. 5(c) 

and Fig. 5(d). BICUBIC_INTER [1] is from bicubic 

interpolation process. And SOBEL [16] is from Sobel edge 

detection algorithm. The access patterns of them are illustrated 

in Fig. 5(e) and Fig. 5(f). 

Table 4 Benchmark Description 

 Benchmark description 

DENOISE_1 2D Rician-denoise, as Fig. 5(a)  

DENOISE_2 2D Rician-denoise, with loop titling, as Fig. 

5(b) 

MOTION_C H.264 motion compensation for chroma 

samples, as Fig. 5(c) 

MOTION_LV H.264 Motion compensation for luma samples  

in horizontal direction, as Fig. 5(d) 

BICUBIC_INTER Bicubic interpolation, as Fig. 5(e) 

SOBEL 2D Sobel edge detection algorithm, as Fig. 

5(f) 

 

               

(a)            (b)            (c)             

                        

     (d)             (e)            (f)  

Fig. 5 The access patterns of the benchmarks: (a) DENOISE_1 

(b) DENOISE_2 (c) MOTION_C (d) MOTION_LV (e) 

BICUBIC_INTER (f) SOBEL 

 

 


