
Memory Partitioning for Multidimensional Arrays in

High-level Synthesis
Yuxin Wang,

1
 Peng Li,

1
 Peng Zhang,

2
 Chen Zhang,

1
 Jason Cong

1,2,3

1
 Center for Energy-Efficient Computing and Applications, Computer Science Department, Peking University, China

2
Computer Science Department, University of California, Los Angeles, USA

3
UCLA/PKU Joint Research Institute in Science and Engineering

{ayerwang, peng.li, chen.ceca}@pku.edu.cn, {pengzh, cong }@cs.ucla.edu

ABSTRACT

 Memory partitioning is widely adopted to efficiently increase

the memory bandwidth by using multiple memory banks and

reducing data access conflict. Previous methods for memory

partitioning mainly focused on one-dimensional arrays. As a

consequence, designers must flatten a multidimensional array to

fit those methodologies. In this work we propose an automatic

memory partitioning scheme for multidimensional arrays based on

linear transformation to provide high data throughput of on-chip

memories for the loop pipelining in high-level synthesis. An

optimal solution based on Ehrhart points counting is presented,

and a heuristic solution based on memory padding is proposed to

achieve a near optimal solution with a small logic overhead.

Compared to the previous one-dimensional partitioning work, the

experimental results show that our approach saves up to 21% of

block RAMs, 19% in slices, and 46% in DSPs.

Categories and Subject Descriptors

B.5.2 [Hardware]: Design Aids–automatic synthesis

General Terms

Algorithms, Performance, Design

Keywords

High-Level Synthesis, Memory Partitioning, Memory Padding

1. INTRODUCTION

To balance the requirements of high performance, low power

and short time-to-market, field programmable gate array (FPGA)

devices have gained a growing market against ASICs and general-

purpose processors over the past two decades. Recently, FPGAs

have also been used as general computing platforms as

alternatives to CPUs and GPUs. Although FPGAs provide plenty

computational units for parallelization, how to supply those units

with the required high-speed data streams is a major challenge.

This is especially true after loop unrolling and pipelining, when

multiple data elements from the same array are often required

simultaneously in a single clock cycle. Typical on-chip block

RAMs (BRAMs) in FPGAs have two access ports. A

straightforward solution is to duplicate the array into multiple

copies [13]. Although the duplication approach can support

simultaneous read operations, it may have significant area and

power overhead and introduce memory consistency problem. A

better approach is to partition the original array into multiple

memory banks. Each bank holds a portion of the original data and

serves a limited number of memory requests.

Memory partitioning has been studied in the distributed

computing domain for decades [8, 15], where data elements are

partitioned into different processors to reduce communication

among the processors. While some of the partitioning algorithms

in distributed computing can be directly applied to high-level

synthesis, the freedom of creating memory banks tailored to the

target application can lead to more efficient memory partitioning

algorithms for high-level synthesis [19, 3, 6, 20, 12]. In [19],

different fields of a single structure are partitioned into multiple

memory banks for data parallelism based on profiling results. In

[3], a single array is decomposed into disjoint memory banks for

storage minimization purposes through accurate lifetime analysis

using a polyhedral model. The purpose of the memory partitioning

algorithm presented in this paper is to improve system

performance by assigning memory accesses to disjoint memory

banks and providing simultaneous conflict-free memory accesses

[6, 20, 12], which is orthogonal to the problem in [3]. In [6], an

automated memory partition algorithm is proposed to support

multiple simultaneous affine memory references to the same array.

The algorithm can be extended to efficiently support memory

references with modulo operations (common after data reuse

using scratchpad memory) with limited memory paddings [20]. In

[12], memory accesses in different loop iterations can be

partitioned into different memory banks and scheduled into the

same cycle to minimize the number of required memory banks.

 However, previous memory partitioning algorithms are

designed for one-dimensional arrays, while many designs for

FPGAs are often specified by nested loops with multidimensional

arrays—such as image, video, and scientific computing

applications. In previous works, a multidimensional array is first

flatted into a single-dimensional array before memory partitioning.

However, memory addresses after array flattening are dependent

on the array size. For different array sizes, different partitioning

schemes are generated, many of which are suboptimal. In this

paper we focus on providing an effective and efficient memory

partition algorithm for multidimensional arrays based on linear

transformation.

The main contributions of this work are described as follows:

1) A linear-transformation-based multidimensional memory

partition algorithm is proposed to generate the smallest

memory bank numbers regardless of the size of input array.

2) An optimal inner-bank offset generation scheme is proposed

based on point counting in polytopes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DAC’13, May 29 - June 07 2013, Austin, TX, USA.

Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00

3) A heuristic solution based on memory padding is proposed

to achieve a near-optimal inner-bank offset generation with

a comparative small logic overhead and storage overhead.

The remainder of this paper is organized as follows: Section 2

provides a motivational example for the multidimensional

memory partitioning; Section 3 formulates the problem, and

Section 4 describes the detailed solution; Section 5 analyzes the

experimental results, and is followed by conclusions in Section 6.

2. MOTIVATIONAL EXAMPLE

Our motivational example, as shown in Fig. 1(a), is from a loop

kernel of the 2D denoise algorithm, which is a key application in

medical image processing [2]. The kernel has five accesses to the

array A in the inner loop. Fig. 1(c) shows the access pattern of the

inner loop iteration and the partition based on linear

transformation, where x0 is the lower-dimension index and x1

denotes the index in higher dimension. The light points in Fig. 1(c)

represent the data elements in the array with the dark points

representing the elements accessed in a single loop iteration. We

assume that the physical memory has one read port—only one

data element can be read from a physical memory in each clock

cycle. To improve the processing throughput of the loop kernel,

we need to pipeline the execution of successive inner loop

iterations, which means that multiple accesses to the same array

will happen in one clock cycle. If array elements are not properly

allocated in multiple physical memory banks, memory conflicts
will occur and pipeline performance will be impacted.

Previous memory partitioning solutions mainly focus on 1-D

arrays, as in [6]. It flattens the array first, as shown in Fig. 1(b),

and then partitions the flattened array. In order to fully pipeline

the loop, five elements of data are required in each clock cycle.

Thus the minimum number of memory banks for a non-conflict

partitioning is five. However a cyclic partition with five banks can

not satisfy the non-conflict constraint according to the code in Fig.

1(b). Take iteration (i, j)=(1, 1) for example, the second reference

(A[64*j+i-1]=A[64]) and the forth reference

(A[64*j+i+64]=A[129]) will access the same bank (64%5 =

129%5). Using the approach in [6] on the flattened array, we can
prove that at least six banks are required.

int A[64][64];
for j= 1 to 62

 for i = 1 to 62

 b[j][i] = f(A[j][i], A[j][i-1], A[j-1][i], A[j+1][i], A[j][i+1]);
//accesses to down, up, left, and right

(a)
int A[4096];

for j= 1 to 62

 for i = 1 to 62
b[j][i] = f(A[64*j+i], A[64*j+i-1], A[64*j+i-64], A[64*j+i+64],

A[64*j+i +1]);

 (b)

0

1

2

1 2 x0

x1Bank 0

Bank 1

Bank 4Bank 3Bank 2

3
Bank Number=5 f=(x0+2x1)%5

0 4 5

(c)

Fig. 1 Denoise: (a) original loop kernel, (b) loop kernel with

flattened array, (c) multidimensional partitioning based on

linear transformation

In fact, using the linear transformation based multidimensional

partitioning method proposed in this work, the original code (Fig.

1(a)) can be fully pipelined with five memory banks. As

illustrated in Fig. 1(c), the data elements on the same dotted line

will be partitioned into the same memory bank, e.g., the data

A[0][2] and A[1][0] are in the same bank. Whereas, the five data

elements accessed in one inner-loop iteration are mapped into five

different banks; i.e., in iteration (i, j)=(1, 1), the second reference

(A[1][0]) and the forth reference (A[2][1]) are no longer in the

same bank. Based on the linear transformation method we

proposed, the code in Fig. 1(a) is partitioned with a linear

transformation () (as shown in Fig. 1(c)). We

will describe the detailed partitioning algorithm in Sections 3 and

4.

3. PROBLEM FORMULATION

In this paper we will describe how we partition several

multidimensional memory references in a multidimensional loop

nest to separate memory banks to enable loop pipelining with

simultaneous memory accesses. For simplicity, loop initiation

interval (II) and physical memory port number are both assumed

to be 1 in this paper. Algorithms and formulations can be

extended for any constant loop initiation interval and physical

memory port number by scheduling and mapping the accesses

onto different time intervals and physical memory ports (as

presented in [6]).

DEFINITION 1 (ITERATION DOMAIN [10]) Given a l-level loop nest

with the iteration variables from outermost to

innermost loop, the iteration vector is a vector of iteration

variables, ⃗ ()
 . The iteration domain D is a set of

all iteration vectors in the loop bounds.

DEFINITION 2 (AFFINE MEMORY REFERENCE) Given a

d-dimensional array, a d-dimensional affine memory reference to

the array is a set of linear combinations of iteration vectors and a

constant:

 (

) ()

where is the coefficient of the j-th iteration vector in the

k-th dimension.

DEFINITION 3 (DATA DOMAIN) Given a loop with m affine memory

references on the same array, the data domain

M of the array is defined as a set of all memory elements accessed

by any memory reference in any loop iteration. Assuming the

memory element accessed by memory reference in iteration ⃗

is represented as (⃗), then

M = ⋃ (⃗) ⃗

DEFINITION 4 (MEMORY PARTITION) A memory partition of an

array with data domain M is described as a pair of mapping

functions (f(), g()), , where f() is the bank number

that is mapped to, and g() is the corresponding inner bank

offset. Also f() 0, and g() 0.

 After memory partitioning, a data element in the original array

is allocated on a new memory bank with a new array offset (inner

bank offset). The validation of the partitioning is interpreted as

two distinct data elements mapped onto either different memory

banks or the same bank with different inner bank offsets. A valid

memory partition of an array with data domain M is described as

 ,

 ⇔ (f(), g()) (f() g())

where (f(), g()) (f() g()) means

f() f() or f() f(), g() g()

 An access conflict between two memory references and

() means that ⃗ , (⃗) (⃗)

f((⃗)) f((⃗))

This access conflict constraint is under the assumption that each

physical memory only has one port. With the preceding

definitions and formulations, we use Problem 1 defined below to

formulate the multidimensional memory partitioning problem.

Eqn. (1) defines the optimality of memory partitioning, as our

main objective is to minimize the memory bank number. Eqn. (2)

is responsible for the validity of the partitioning. Eqn. (3) ensures

no conflict access in any iteration, which is required for

fully-pipelined loops.

PROBLEM 1. (BANK NUMBER MINIMIZATION). Given a loop with

m affine memory references on the same array,

find the optimal memory partition f, such that:

The storage overhead minimization problem is formulated as

Problem 2 under the same valid partition and non-conflict

constraints as Problem 1.

PROBLEM 2 (STORAGE MINIMIZATION). Given a loop with m affine

memory references on the same array, a

memory partition number N, find the inner bank offset function

g and check globally for consistency such that:

4. PARTITIONING ALGORITHM

In this paper, we propose a Linear Transformation Based (LTB)

memory partitioning algorithm. The algorithm is general enough

to cover the solutions from previous array flattening based

approaches. We only consider cyclic partitioning strategy in this

work. Other partitioning schemes (as block and block-cyclic) can

be applied based on this solution.

A d-dimensional memory index ⃗ ()
 is first

transformed by ⃗ ⃗ ⃗ , where ⃗ () , .

According to the properties of cyclic partitioning, the bank

mapping function f is described as

 (⃗) (⃗ ⃗) .

 From a geometrical point of view, ⃗ ⃗ represents a series

of hyperplanes in the data domain, where , and (⃗)

assigns the hyperplanes to different banks according to the value

of c%N. The traditional array flattening approach is just a special

case of LTB when ⃗ is decided by the dimensional width, as

shown in Example 1.

EXAMPLE 1 (Flattening Partition) Supposing that the dimensional

width of the target array from low dimension to high dimension is

w0,…,wd-1, the traditional approach will first flatten the reference

into one dimension. Then the array is cyclically partitioned, using

modulo and division operations to generate the bank number and

inner bank offset. The bank mapping function and inner bank

offset function are described as below.

 (⃗) (∏
 ∏

)

 (⃗) (∏
 ∏

)

We can see that the flattening partition is just a special case in

LTB method with the coefficient ⃗ equal to

(∏
 ∏

).

4.1 Bank Mapping

Extending the constraint provided by work in [6], we build our

own non-conflict constraint for d-dimensional array references as

Theorem 1. It offers a sufficient condition for the conflict-free

accesses regulated by Eqn. (3). With the constraint, we can find

the candidate linear transformation vectors that meets the

requirement. Assuming that there are two d-dimensional array

references as

 (

) () and

 (

) () ,

the bank mapping for and with a linear transformation

vector ⃗ () is

 () (⃗) and () (⃗) .

THEOREM 1. Assuming that a d-dimensional array is accessed by

two references and in an l-level loop nest, the array is

cyclically partitioned into N banks with a linear transformation

vector ⃗ and a bank mapping function so that the

simultaneous accesses are not in conflict in the iteration domain,

if

 (⃗
 ⃗

 ⃗
) ⃗

 (4)

where

 (), (),

 ,

The detailed proof is in Appendix.

EXAMPLE 2. For a two dimensional array A[64][64] with two array

references A[j][i], and A[j+1][i+1] in the inner loop iteration, the

linear transformation vector (,)=(1,2) and N=2 meets the

non-conflict constraint according to gcd(0,0,2)=2 (1+2).

The candidate ⃗ can be generated by exhaustive enumeration.

We can use some constraints to reduce the searching space. First,

it is obvious that () . Second, the

optimal partition number is the number of the references m. For

this target N, the searching space for the ⃗ is Nd (
). If ⃗ is a candidate, for and

 , ⃗ () also meets

the constraint. In addition, the theorem can be easily extended to

multiple references by detecting the conflict between each pair of

references.

4.2 Constructing Inner Bank Offset Functions
 Using techniques in Section 4.1, the candidate linear

transformation vectors can be generated. In this section, we will

Minimize bank_num= ()} (1)

Subject to (f(), g()) (f() g()) (2)

 ⃗ ((⃗)) ((⃗)) (3)

Minimize storage=∑

Subject to () ()

 , ()

 (f(), g()) (f() g())

 ⃗ f((⃗)) f((⃗))

specify how to calculate the inner bank offset for a given linear

transformation vector. The principle is to keep the validation of

the partitioning, which is that two different data can’t be mapped

to the same physical location. Our goal is to optimize Problem 2,

for with different mapping functions, some physical locations may

be mapped without any data so that an extra storage overhead is

induced. Two approaches are introduced in this section.

4.2.1 Optimal Approach
An optimal approach to generate the inner bank offset is to scan

the data in sequence. Since all of the data elements on the same

hyperplane set (()) are in the same bank, scanning

the data along the hyperplane set in sequence and use the

sequence number as the inner bank offset can generate a valid

memory partition without any extra storage overhead. The

problem can be converted by integer point counting in a polytope

using Ehrhart polynomial [9]. Two polytopes (a base polytope and

an offset polytope) are formulated for a given point
(

). Then the sum of the point number in the two

polytopes is used as the inner bank offset for the point. We

illustrate this process in Example 3. The detailed formulation and

theory of integer point counting using Ehrhart polynomial is given

in Appendix.

EXAMPLE 3. Given a candidate vector ⃗=(1,2), the hyperplanes

are described as . For a given point = (3,1), the

two polytopes are formed as in Fig. 2, in which the base polytope

contains the hyperplanes with , and the offset polytope is on

c=5. According to the theory in [9], the point numbers in the two

polytopes are the functions of and
 separately. By using the

Ehrhart tool in Polylib [21], we get the Ehrhart polynomials for

each polytope as and .

 ()＝

 (

)

 (
)

 ,

where [.

When =(

) = (3,1), c=5,

 ()=

 , ,

 ()

Using Ehrhart’s point-counting method, we have the optimal

solution to Problem 2, but we find that the area required for

computing the optimal g fuctions can be very large. In Example 2,

four multiplications and two tables (generating the constants in the

end of the polynomials) are used. Although we can get the optimal

solution to both Problem 1 and Problem 2, compared to the

straightforward array-flattening method, the complex address

generation in this method makes it not worth doing. As a result a

trade-off between practicality and optimality is considered using a

heuristic approach presented next.

Fig. 2 An example of Ehrhart’s point-counting

4.2.2 Heuristic Approach

 Our heuristic method to efficiently find a linear transformation

vector with a comparative simple inner bank offset function g is to

do memory padding in the data domain. As stated before, a linear

transformation vector ⃗ for flattening partition is

 ⃗=(∏
 ∏

).

It may lead to suboptimal partitioning as we depicted in the

motivational example. Our memory padding method finds the

coefficient vector ⃗ with the validity guaranteed based on this

given vector. Firstly, a padding vector ⃗=() is

introduced, in which represents the increase of size in k-th

dimension. For a sub-domain formed by dimension j and

dimension k () with a given bank number N and

bank linear transformation vector ⃗ (), a

padding size , a valid partition should satisfy

 () .

It is equal to Eqn. (5).

 () (5)

The new linear transformation vector ⃗ is

 ⃗=(∏
 ∏

),

where .

 The geometric meaning of the memory padding is that as each

hyperplane only has one data element with the vector based on

array flattening, the address is actually generated by scanning

along a certain dimension. With a certain bank number, the

allocation of the banks needs to be continuous between the last

data element in the previous line and the first data element in the

next line so that the partitioning validity is met. Fig. 3 shows an

example for our method. To meet the validity of the partitioning

with an optimal bank number five, dimension is increased by

2 (size increased from 64 to 66).

Fig. 3 An example for memory padding

The above discussion is based on a fixed dimension scanning

order. But in fact the value of the element in ⃗ implies the

scanning order. For example, implies the scanning starts

from dimension k. Thus when we change the value of ⃗ in a

range, the scanning order of the array and the total padding size

will be changed. Through this, we minimize the extra storage

overhead induced by memory padding. The padding size on each

dimension is bounded within N, as each dimension is cyclically

partitioned according to bank mapping function f. Eqn. (5) could

be simplified as , then we have

 ⌈

⌉ (6)

The maximum padding size on a d-dimensional array with N

partition banks is calculated as

()
∏

 ()

∏

+ ()

∏

4.3 Overall Flow
 This section describes the overall flow while using memory

padding based heuristic method. As the interplay between the

padding size and the bank number, we give our flow to find the

0

1

2

1 2 x0

x1Bank 0

Bank 1

Bank 4Bank 3Bank 2

3

Bank Number=5 f=(x0+2x1)%5

0 4 5

(3, 1)

offset polytope

base polytope

0

1

2

1 2

x0

x1

Bank 2

0 6463...
Bank Number=5

Bank 4

65 66 67

Bank 0

Bank 1

f=(x0+67x1)%5 Q=3

...

...

tradeoff between the optimal partition and extra storage overhead.

The lower bound for the bank number N is the reference number

m in the inner loop iteration. First, we fix the bank number N

(). Second, we find the possible padding

 ⃗=() under various array dimension orders with

linear transformation coefficient ⃗ (). And we’ll

get the best candidate vector ⃗ with the total padding size

minimized. Then we check whether ⃗ satisfy the conflict-free

constraint in Eqn. (4) with the bank number N. The detailed LTB

algorithm is described as follows.

Step 1: Give the partition bank number .

Step 2: Find every possible ⃗ () with a

padding vector ⃗ according to Eqn. (6). Queue all the ⃗ by the

increase of the total padding size. Find ⃗ with the minimum

padding size.

Step 3: Check if ⃗ meets the conflict-free requirement

according to Eqn. (4). If ⃗ cannot meet the requirement, find

the next solution in the queue and recheck the conflict-free

constraint.

Step 4: If there is no solution for N, N=N+1, go back to Step 2.

The complexity of searching for an array dimension order is

∏
 . And according to Eqn. (6), we can actually calculate the

padding size based on a given dimension order. This flow is

capable to find a solution for both Problem 1 and Problem 2. It is

optimal in Problem 1, and it provides a near optimal solution to

Problem 2 with a bounded maximum extra storage overhead and a

low complexity. Our experiments prove that in some cases the

padding method can find an optimal solution and in other cases

the gap between it with optimality is small.

5. EXPERIMENTAL RESULTS

5.1 Experiment Setup

 The automatic multidimensional memory-partitioning flow is

implemented in C based on the open source compiler

infrastructure ROSE [14]. ROSE is a flexible translator supporting

source-to-source code transformation. We use Vivado from Xilinx

[17] as the high-level synthesis tool. The RTL output is

implemented by Xilinx ISE 13.1 [18] on the target FPGA platform

Xilinx Virtex-6. The implementation flow is illustrated in Fig. 4.

The high-level abstraction is parsed into the flow with the

partition directives and constraints, such as target II. After

memory partitioning analysis and source-to-source code

transformation, the transformed code is synthesized by the

high-level synthesis tool and followed by logic synthesis.

Six loop kernels are selected from the real applications as the

benchmarks. As we focus on the effects brought by different

access patterns, several of the benchmarks are the loop kernels

from the same application with different access patterns.

DENOISE_1 and DENOISE_2 are from the Rician-denoise

algorithm [11] in medical image applications. DENOISE_1 is the

original access pattern which accesses five data elements in the

inner-loop iteration. DENOISE_2 is the access pattern by

unrolling the loop in DENOISE_1 by 2. MOTION_LV and

MOTION_C are the different loop kernels of motion

compensation from official H.264 decoder JM 14.0 [4].

MOTION_LH is the motion compensation for luma samples in

the video frame in the vertical direction, and MOTION_C is the

interpolation for the chroma components. BICUBIC_INTER [1] is

from bicubic interpolation process. And SOBEL [16] is from

Sobel edge detection algorithm. (The detailed access patterns of

the benchmarks are illustrated in Appendix)

C/C++

specification

Source-to-Source

Translation

(ROSE)

High-level Synthesis, Logic Synthesis

Vivado Design Suit,

ISE Design Suit

Partition Directives

Constraints

Fig. 4 Implementation flow

5.2 Experimental Results

The detailed experimental results are shown in Table 1, Table 2

and Table 3. We compared the experimental results for the

state-of-art 1-dimensional partition algorithm with flattened arrays

and our proposed linear transformation based algorithm (LTB).

Table 1 shows the percentage of extra storage overhead when

applying different memory size on DENOISE_1. The results after

source-to-source transformation are shown in Table 2. And Table

3 shows the results after synthesizing. The algorithm from [6] for

the flattening memory partitioning is re-implemented for

comparison. As shown in Table 2, we list the original II of the

pipelined loop and the target II. Our target throughput is II=1.

The partitioning in both of the methods can meet the throughput

requirement. The bank number for achieving the target throughput

by using the flattening method and LTB are represented in the

next two columns, followed by the essential padding size after

applying LTB. Physical resource usage (block RAMs, slices, and

DSPs) and timing information are reported by Xilinx ISE, and

power estimation is given by Xilinx XPower Analyzer. The block

RAMs are dual-port in the Xilinx Virtex-6.

Table 1 represents the percentage of padding size compared to

the original array size (also the optimal solution). 140 different

array sizes are applied in the experiments. And we found that the

padding size is related tiny. In Table 2, we can see that our

proposed LTB method improves the partitioning bank number on

all of the six benchmarks. And five benchmarks have extra

padding by using our LTB approach (DENOISE_1, DENOISE_2,

MOTION_C, BICUBIC_INTER, and SOBEL). As each piece of

the partition is relatively not too large and can fit in a BRAM, the

padding size is totally negliable. However, if the arrays in the

benchmarks are originally large, memory padding may introduce

extra memory overhead; this means that more block RAMs are

required.

Table 3 represents the use of logical units on FPGA. The

utilization of block RAMS, Slices and DSPs are very related to

the bank number. The average BRAMs improvement after using

LTB is up to 21%. In the benchmarks DENOISE_2 and

MOTION_C, the reduction of DSPs is up to 96% and 100%. In

these cases, the partitioning number is reduced to a power of 2,

which can be implemented as data shifting rather than using DSPs

for the dividers. Although the use of the physical resources in

DENOISE_1, DENOISE_2, BICUBIC_INTER, and SOBEL is

reduced, the power estimation increases in these benchmarks,

especially in SOBEL (about 48.85%). Based on our analysis of

the transformed code, LTB uses more logic to implement the

address generation for the array indices due to the extra padding

size (It introduces an extra multiplication in each index). We

could optimize it with some common address generation strategies

(as the scheme proposed in [12]). However, in the benchmark

SOBEL, as the flattening method uses 25% more block RAMs in

this benchmark and the critical path is much longer than the one in

LTB, the target CP (5ns) cannot be met.

In all, there is an average 21% reduction in BRAMs, 19%

reduction in slices, 46% reduction in DSPs, and 14.69% more

overhead in power. The CP has a small increase of 0.6% on

average.

Table 1 Storage overhead of padding method

Array Size(# of data) Padding Rate

<1000 0.0706

1000~5000 0.0281

5000~10000 0.0161

10000~20000 0.0116

>20000 0.0098

Table 2 High-level partitioning results

Original

II

Target

II

Bank

(Flatten)

Bank

(LTB)

Padding

size

DENOISE_1 5 1 6 5 64

DENOISE_2 8 1 10 8 128

MOTION_C 4 1 6 4 64

MOTION_LV 6 1 7 6 0

BICUBIC_INTER 4 1 6 5 64

SOBEL 9 1 12 9 64

Table 3 Synthesis experimental results

 Block

RAM
Slice DSP CP

(ns)
Power

DENOISE_1 Flatten 6 531 8 3.826 537

LTB 5 441 8 4.451 685

comp.(%) -16.7 -16.9 0 16.3 27.5

DENOISE_2 Flatten 10 1114 75 4.995 1097

LTB 8 767

3 4.563 1367

comp.(%) -20 -31.1 -96 -8.6 24.6

MOTION_C Flatten 6 515 4 4.215 670

LTB 4 255 0 4.068 484

comp.(%) -33.3 -50.5 -100 -3.5 -27.8

MOTION_
LV

Flatten 7 627 9 4.143 1263

LTB 6 601 9 3.846 1026

comp.(%) -14.3 -4.1 0 -7.2 -16.15

BICUBIC_
INTER

Flatten 6 456 4 3.870 512

LTB 5 441 4 4.451 672

comp.(%) -16.7 -3.3 0 15 31.25

SOBEL Flatten 12 1302 105 5.222 1441

LTB 9 1195 15 4.808 2145

comp.(%) -25 -8.2 -85.7 -7.9 48.85

AVERAGE(%) -21 -19 -46 0.6 14.69

6. CONCLUSIONS
 Memory partitioning is a crucial technology to enable

data-level parallelism in FPGA designs. In this work we propose

an automatic memory-partitioning method for multidimensional

arrays. Linear transformation on the multidimensional array

indices is introduced to extend the design space for the possible

optimal solution. An optimal solution based on Ehrhart points

counting and a heuristic solution based on memory padding are

proposed. Experimental results demonstrate that compared with

the state-of-art partitioning algorithm, our proposed algorithm can

reduce the number of block RAMs by 21%.

7. ACKNOWLEDGMENTS
This work was supported in part by the National High

Technology Research and Development Program of China

2012AA010902, RFDP 20110001110099 and 20110001120132,

and NSFC 61103028. We would like to thank UCLA/PKU Joint

Research Institute in Science and Engineering (JRI) and the

support from Xilinx.

8. REFERENCES

[1] Bicubic interpolation
http://www.mpi-hd.mpg.de/astrophysik/HEA/internal/Numerical_Re
cipes/f3-6.pdf

[2] Center for Domain-Specific Computing
http://www.cdsc.ucla.edu/

[3] F.Balasa, H.Zhu, I.I.Lucian, “Computation of Storage Requirements
for Multi-Dimensional Signal Processing Applications,” Signal
Processing Systemsm,” in IEEE Trans. Very Large Scale Integration
Systems (TVLSI),VOL.15, No.4,2007.

[4] JM Software, H.264/AVC Software Coordination,
http://iphome.hhi.de/suehring/tml/

[5] J. Cong, P. Zhang and Y. Zou, "Optimizing Memory Hierarchy
Allocation with Loop Transformations for High-Level Synthesis",
Proceedings of the 49th Annual Design Automation Conference
(DAC 2012), pp. 1233-1238, 2012.

[6] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic Memory

Partitioning and Scheduling for Throughput and Power

Optimization,” in ACM Trans. on Design Automation of Electronic
Systems (TODAES), 2011, Vol. 16 Issue 2, Article 15

[7] L. T. Yang,Y. Pan, et al, High performance scientific and

engineering computing: hardware/software support, Springer, 2003

[8] M. Gupta, “Automatic Data Partitioning on Distributed Memory
Multicomputers,” 1992.

[9] P. Clauss, V. Loechner, “Parametric Parametric Analysis of
Polyhedral Iteration Spaces,” in Journal of VLSI signal processing
systems for signal, image and video technology, Volume 19, Issue 2,
pp 179-194, 1998.

[10] P. Feautrier, “Some efficient solutions for the affine scheduling
problem, part I, one dimensional time,” in International Journal of
Parallel Processing, 21(6), December 1992

[11] P. Getreuer, “tvreg: Variational imaging methods for denoising,
deconvolution, inpainting, and segmentation,” online available:
http://code.google.com/p/cdsc-image-processing-pipeline/downloads
/list

[12] P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang, and J. Cong, “Memory
Partitioning and Scheduling Co-optimization in Behavioral
Synthesis”, in Inter. Conf. on Computer-Aided Design (ICCAD),
2012, pp. 488-495.

[13] Q. Liu, T. Todman, W. Luk, “Combining Optimizations in
Automated Low Power Design,” in Proc.of Design, Automation and
Test Europe(DATE), 2010, pp. 1791-1796.

[14] ROSE compiler infrastructure,
http://rosecompiler.org/

[15] S. Chatterjee, et al, “Generating Local Addresses and
Communication Sets for Data-parallel Programs,” Journal of

Parallel and Distributed Computing,1995.

[16] S. Verdoolaege, H. Nikolov, and T. Stefanov, "pn: A Tool for
Improved Derivation of Process Networks," EURASIP Journal on
Embedded Systems, vol. 2007, pp. 1-13, 2007.

[17] Vivado High-Level Synthesis ,
http://www.xilinx.com/products/design-tools/vivado/integration/esl-
design/hls/index.htm

[18] Xilinx ISE Design Suite, http://www.xilinx.com/
[19] Y. Ben-Asher, N. Rotem, “Automatic Memory Partitioning:

Increasing Memory Parallelism via Data Structure Partitioning,” in
Proc. of the 8th Int. Conf. on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2010, pp, 155-162.

[20] Y. Wang, P. Zhang, X. Cheng, and J. Cong, "An Integrated and
Automated Memory Optimization Flow for FPGA Behavioral

Synthesis," in Asia and South Pacific Design Automation Conf.

(ASP-DAC), 2012, pp. 257-262.

[21] Polylib, http://www.irisa.fr/polylib/

Appendix
1. The proof of Theorem 1

Assuming that there are two d-dimensional array references in

the iteration domain as

 (

) () and

 (

) () .

The bank number mapping functions with a linear

transformation vector ⃗ () are

 () (⃗) and () (⃗)

THEOREM 1. Assuming that a d-dimensional array is accessed by

two references and in an l-level loop nest, the array is

cyclically partitioned into N banks with a linear transformation

vector ⃗ and a bank mapping function so that the

simultaneous accesses are not in conflict in the iteration domain,

if

 (⃗
 ⃗

 ⃗
) ⃗

where

 (), (),

 ,

Proof

The converse-negative proposition of theorem is proved as:

. ⃗ () ()

⇔ ⃗ ⃗

⇔ ⃗ ⃗ (

) ()

 ⃗ ()

⇔ (⃗ ()
 ⃗ ()

 ⃗ ()
)

 ⃗ ()

 ⇔ (⃗
 ⃗

 ⃗
) ⃗

where

 (), (),

 ,

2. Ehrhart’s Points-Counting Theory

The following definitions and theorems are referenced from [9],

as supplemental materials to section 4.2.1 to help understand the

optimal approach.

Let Q denote the set of rational numbers and Z the set of

integers. A convex polyhedron is defined by a finite set of linear

inequalities:

 |

where A is a rational matrix and b a rational vector.

Definition 1 (homothetic-bordered system [9]). Let HN, N= (n1,

n2, …, nq), be a system defined by constraints of the form
∑ ∑ , ∑ ∑ , ∑ ∑

 , where the ’s, the ’s and the ’s are given integers, the

 ’s are free variables and the ’s are positive integral

parameters.

Such a system is homothetic-bordered if and only if the polytope

it defines has vertices whose coordinates are affine combinations

of the parameters.

Counting the number of integer points is based on the

decomposition of a parametric polytope into several

homothetic-bordered systems, associated with validity domains.

Example

 and

are homothetic-bordered system and
 is not

homothethic-bordered system.

Definition 2 (periodic number [9]). A one-dimensional periodic

number u(n)= [u1, u2, …., up]n is equal to the item whose rank is

equal to n mod p, p is called the period of u(n).

 ()

{

 ()

 ()

 ()

Example

Definition 3 (denominator [9]). The denominator of a rational

point is the lowest common multiple of the denominators of its

coordinates. The denominator of a rational polyhedron is the

least common multiple of the denominators of its vertices.

Theorem 1 (Ehrhart’s fundamental theorem [9]). The

enumerator of any homothetic-bordered k polyhedron is

a polynomial in n of degree k if is integral; and it is a

pseudo-polynomial in n of degree k whose pseudo-period is the

denominator of if is rational.

EXAMPLE Bank mapping function: () ,

 , for () = (32,15), find the inner bank

address.

There are two polytopes: base polytope and offset polytope

 The base polytope is

{

There are four Ehrhart polynomials for the base polytope. For

different domain of d, they are:

Domain1: c -197 >= 0

Ehrhart Polynomial: () 845

Domain2: c -133 >= 0 and - c + 197 >= 0

Ehrhart Polynomial:

 ()

Domain3: c -69 >= 0 and - c + 133 >= 0

Ehrhart Polynomial: ()

Domain4: - c + 69 >= 0 and c -5 >= 0

Ehrhart Polynomial:

 ()

 (

)

 The offset polytope is

{

 (
)

() = (32,15), c=62,

 () () = 203

3. Detailed descriptions of the benchmarks

The detailed description of the benchmarks is listed in Table 2.

DENOISE_1 and DENOISE_2 are from the Rician-denoise

algorithm [11] from medical image applications, and their

access patterns are shown in Fig. 5(a), Fig. 5(b). DENOISE_1

and DENOISE_2 are the original access patterns in the

application. DENOISE_2 is the access pattern by unrolling

DENOISE_1 by 2. MOTION_LV and MOTION_C are the

different loop kernels of motion compensation from official

H.264 decoder JM 14.0 [4]. MOTION_C is the interpolation for

the chroma components. MOTION_LV is the motion

compensation for the luma samples in the video frame in the

vertical direction. Their access patterns are shown in Fig. 5(c)

and Fig. 5(d). BICUBIC_INTER [1] is from bicubic

interpolation process. And SOBEL [16] is from Sobel edge

detection algorithm. The access patterns of them are illustrated

in Fig. 5(e) and Fig. 5(f).

Table 4 Benchmark Description

 Benchmark description

DENOISE_1 2D Rician-denoise, as Fig. 5(a)

DENOISE_2 2D Rician-denoise, with loop titling, as Fig.

5(b)

MOTION_C H.264 motion compensation for chroma

samples, as Fig. 5(c)

MOTION_LV H.264 Motion compensation for luma samples

in horizontal direction, as Fig. 5(d)

BICUBIC_INTER Bicubic interpolation, as Fig. 5(e)

SOBEL 2D Sobel edge detection algorithm, as Fig.

5(f)

(a) (b) (c)

 (d) (e) (f)

Fig. 5 The access patterns of the benchmarks: (a) DENOISE_1

(b) DENOISE_2 (c) MOTION_C (d) MOTION_LV (e)

BICUBIC_INTER (f) SOBEL

